logo
    Abstract:
    Clathrin-mediated endocytosis (CME) robustness under elevated membrane tension is maintained by actin assembly-mediated force generation. However, whether more actin assembles at endocytic sites in response to increased load has not previously been investigated. Here actin network ultrastructure at CME sites was examined under low and high membrane tension. Actin and N-WASP spatial organization indicate that actin polymerization initiates at the base of clathrin-coated pits and that the network then grows away from the plasma membrane. Actin network height at individual CME sites was not coupled to coat shape, raising the possibility that local differences in mechanical load feed back on assembly. By manipulating membrane tension and Arp2/3 complex activity, we tested the hypothesis that actin assembly at CME sites increases in response to elevated load. Indeed, in response to elevated membrane tension, actin grew higher, resulting in greater coverage of the clathrin coat, and CME slowed. When membrane tension was elevated and the Arp2/3 complex was inhibited, shallow clathrin-coated pits accumulated, indicating that this adaptive mechanism is especially crucial for coat curvature generation. We propose that actin assembly increases in response to increased load to ensure CME robustness over a range of plasma membrane tensions.
    Keywords:
    Actin remodeling
    Actin filaments transiently associate with the endocytic machinery during clathrin-coated vesicle formation. Although several proteins that might mediate or regulate this association have been identified, in vivo demonstration of such an activity has not been achieved. Huntingtin interacting protein 1R (Hip1R) is a candidate cytoskeletal-endocytic linker or regulator because it binds to clathrin and actin. Here, Hip1R levels were lowered by RNA interference (RNAi). Surprisingly, rather than disrupting the transient association between endocytic and cytoskeletal proteins, clathrin-coated structures (CCSs) and their endocytic cargo became stably associated with dynamin, actin, the Arp2/3 complex, and its activator, cortactin. RNAi double-depletion experiments demonstrated that accumulation of the cortical actin-endocytic complexes depended on cortactin. Fluorescence recovery after photobleaching showed that dynamic actin filament assembly can occur at CCSs. Our results provide evidence that Hip1R helps to make the interaction between actin and the endocytic machinery functional and transient.
    Cortactin
    Actin remodeling
    MDia1
    Profilin
    Actin-binding protein
    Citations (159)
    Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits.
    Citations (124)
    The actin cytoskeleton has been implicated in the maintenance of discrete sites for clathrin-coated pit formation during receptor-mediated endocytosis in mammalian cells, and its function is intimately linked to the endocytic pathway in yeast. Here we demonstrate that staining for mammalian endocytic clathrin-coated pits using a monoclonal antibody against the AP2 adaptor complex revealed a linear pattern that correlates with the organization of the actin cytoskeleton. This vesicle organization was disrupted by treatment of cells with cytochalasin D, which disassembles actin, or with 2,3-butanedione monoxime, which prevents myosin association with actin. The linear AP2 staining pattern was also disrupted in HeLa cells that were induced to express the Hub fragment of the clathrin heavy chain, which acts as a dominant-negative inhibitor of receptor-mediated endocytosis by direct interference with clathrin function. Additionally, Hub expression caused the actin-binding protein Hip1R to dissociate from coated pits. These findings indicate that proper function of clathrin is required for coated pit alignment with the actin cytoskeleton and suggest that the clathrin–Hip1R interaction is involved in the cytoskeletal organization of coated pits.
    Actin-binding protein
    Actin remodeling
    MDia1
    Clathrin adaptor proteins
    Cytochalasin D
    Citations (50)
    Clathrin-mediated endocytosis in mammalian cells is critical for a variety of cellular processes including nutrient uptake and cell surface receptor down-regulation. Despite the findings that numerous endocytic accessory proteins directly or indirectly regulate actin dynamics and that actin assembly is spatially and temporally coordinated with endocytosis, direct functional evidence for a role of actin during clathrin-coated vesicle formation is lacking. Here, we take parallel biochemical and microscopic approaches to address the contribution of actin polymerization/depolymerization dynamics to clathrin-mediated endocytosis. When measured using live-cell fluorescence microscopy, disruption of the F-actin assembly and disassembly cycle with latrunculin A or jasplakinolide results in near complete cessation of all aspects of clathrin-coated structure (CCS) dynamics. Stage-specific biochemical assays and quantitative fluorescence and electron microscopic analyses establish that F-actin dynamics are required for multiple distinct stages of clathrin-coated vesicle formation, including coated pit formation, constriction, and internalization. In addition, F-actin dynamics are required for observed diverse CCS behaviors, including splitting of CCSs from larger CCSs, merging of CCSs, and lateral mobility on the cell surface. Our results demonstrate a key role for actin during clathrin-mediated endocytosis in mammalian cells.
    Actin remodeling
    Internalization
    MDia1
    Actin-binding protein
    Citations (434)
    In epithelial cell lines, apical but not basolateral clathrin-mediated endocytosis has been shown to be affected by actin-disrupting drugs. Using electron and fluorescence microscopy, as well as biochemical assays, we show that the amount of actin dedicated to endocytosis is limiting at the apical surface of epithelia. In part, this contributes to the low basal rate of clathrin-dependent endocytosis observed at this epithelial surface. ARF6 in its GTP-bound state triggers the recruitment of actin from the cell cortex to the clathrin-coated pit to enable dynamin-dependent endocytosis. In addition, we show that perturbation of the apical endocytic system by expression of a clathrin heavy-chain mutant results in the collapse of microvilli. This phenotype was completely reversed by the expression of an ARF6-GTP-locked mutant. These observations indicate that concomitant to actin recruitment, the apical clathrin endocytic system is deeply involved in the morphology of the apical plasma membrane.
    Apical membrane
    Actin remodeling
    Citations (39)
    The actin cytoskeleton has been implicated in the maintenance of discrete sites for clathrin-coated pit formation during receptor-mediated endocytosis in mammalian cells, and its function is intimately linked to the endocytic pathway in yeast. Here we demonstrate that staining for mammalian endocytic clathrin-coated pits using a monoclonal antibody against the AP2 adaptor complex revealed a linear pattern that correlates with the organization of the actin cytoskeleton. This vesicle organization was disrupted by treatment of cells with cytochalasin D, which disassembles actin, or with 2,3-butanedione monoxime, which prevents myosin association with actin. The linear AP2 staining pattern was also disrupted in HeLa cells that were induced to express the Hub fragment of the clathrin heavy chain, which acts as a dominant-negative inhibitor of receptor-mediated endocytosis by direct interference with clathrin function. Additionally, Hub expression caused the actin-binding protein Hip1R to dissociate from coated pits. These findings indicate that proper function of clathrin is required for coated pit alignment with the actin cytoskeleton and suggest that the clathrin-Hip1R interaction is involved in the cytoskeletal organization of coated pits.
    Actin-binding protein
    Actin remodeling
    MDia1
    Clathrin adaptor proteins
    Actin assembly facilitates vesicle formation in several trafficking pathways. Clathrin-mediated endocytosis (CME) shows elevated actin assembly dependence under high membrane tension. Why actin assembly at CME sites occurs heterogeneously even within the same cell, and how assembly forces are harnessed, are not fully understood. Here, endocytic dynamics, actin presence, and geometry of CME proteins from three different functional modules, were analyzed using three-dimensional (3D) super-resolution microscopy, live-cell imaging, and machine-learning-based computation. When hundreds of CME events were compared, sites with actin assembly showed a distinct signature, a delay between completion of coat expansion and vesicle scission, indicating that actin assembly occurs preferentially at stalled CME sites. N-WASP is recruited to one side of CME sites where it is positioned to stimulate asymmetric actin assembly. We propose that asymmetric actin assembly rescues stalled CME sites by pulling vesicles into the cell much like a bottle opener pulls off a bottle cap.
    Actin remodeling
    Citations (1)
    The dynamic assembly and disassembly of actin filaments is essential for the formation and transport of vesicles during endocytosis. In yeast, two types of actin structures, namely cortical patches and cytoplasmic cables, play a direct role in endocytosis, but how their interaction is regulated remains unclear. Here we show that Srv2/CAP, an evolutionally conserved actin regulator, is required for efficient endocytosis due to its role in the formation of the actin patches that aid in initial vesicle invagination and the actin cables that these move along. Deletion of the SRV2 gene results in the appearance of aberrant fragmented actin cables that frequently moved past actin patches, the sites of endocytosis. We find that the C-terminal CARP domain of Srv2p is vitally important for the proper assembly of actin patches and cables; we also demonstrate that Srv2's N terminal HFD domain is required for its localization to actin patches, specifically to the ADP-actin rich region through an interaction with cofilin. These results demonstrate the in vivo roles of Srv2p in the regulation of the actin cytoskeleton during clathrin-mediated endocytosis.
    Actin remodeling
    MDia1
    Cofilin
    Internalization
    Citations (11)