Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy
Y. LiuDailin XuYing LiuXiao ZhengJie ZangWanli YeYuge ZhaoRuiqing HeShuangrong RuanTingting ZhangHaiqing DongYan LiYongyong Li
33
Citation
55
Reference
10
Related Paper
Citation Trend
Keywords:
Immunosuppression
Immunogenic cell death
Cancer Immunotherapy
Cancer Immunotherapy
Immunogenic cell death
Cite
Citations (50)
Cancer immunotherapy, which suppresses cancer progression by activating the anti-cancer immunity of patients, shows utility in treating multiple types of cancers. Immunogenic cell death (ICD) induced by most clinical treatment modalities plays a critical role in promoting cancer immunotherapy by releasing tumor-associated antigens and neoantigens and exposing "danger signals" to stimulate immune cells. This comment article presents the different roles of nanoparticles in various treatment modalities of cancers, including chemotherapy, radiotherapy, photodynamic and photothermal therapies, and therapy with radiated tumor cell-released nanoparticles, which often activate anti-cancer immunological effects by inducing ICD of cancer cells, and highlights the challenges and opportunities of ICD-related cancer immunotherapy in the clinic.
Cancer Immunotherapy
Immunogenic cell death
Cancer Treatment
Cite
Citations (80)
Cancer immunotherapy has been a favorable strategy for facilitating antitumor immunity. However, immune tolerance and an ultimate immunosuppressive tumor microenvironment (ITM) are primary obstacles. To achieve the goals of remodeling the ITM and promoting cancer immunotherapy, a versatile nanoparticle codelivering shikonin (SK) and PD-L1 knockdown siRNA (SK/siR-NPs) was reported. SK/siR-NPs are demonstrated to tellingly induce the immunogenic cell death (ICD) of tumor cells, leading to increased dendritic cell maturation. Moreover, SK/siR-NPs can cause an efficacious inhibition of PD-L1, leading to enhanced cytotoxic T lymphocyte response to tumor cells. Most importantly, SK/siR-NPs can restrain lactate production via the downregulation of pyruvate kinase-M2 (PKM2) and eventually repolarize tumor associated macrophages (TAMs) from the M2-subtype to M1-subtype states. Meanwhile, SK/siR-NPs suppress regulatory T lymphocytes to fight with the ITM. Overall, the developed co-delivery system presents a significant potential for cancer immunotherapy through simultaneously inducing ICD, repolarizing M2-TAMs, and relieving PD-L1 pathway-regulated immune tolerance.
Cancer Immunotherapy
Cite
Citations (65)
Immunogenic cell death
Immunosuppression
Tumor Hypoxia
Immune checkpoint
Hypoxia
Cancer Immunotherapy
Cite
Citations (2)
Intracellular redox imbalance, achieved by exploiting the tumor microenvironment (TME), has emerged as a promising strategy for cancer therapy. In this study, we developed a multifunctional nanoadjuvant, termed GITFe/Z-HA, by modified a metal-organic backbone Fe/ZIF-8 with hyaluronic acid (HA) targeting. The nanocarriers were loaded with glucose oxidase (Gox), neoindocyanine green (IR820) and tilazamine (TPZ). This design aimed to achieve a cascade reaction within tumor cells, mediated by Gox, Fe3+, and IR820, which consumes intrinsic glucose and oxygen, leading to an elevated production of reactive oxygen species (ROS). This cascade reaction creates a hypoxic environment conducive for TPZ to exert its therapeutic action. Consequently, the combination of photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy demonstrates a good synergistic effect. Moreover, the imbalanced ROS/glutathione (GSH) induced by this treatment approach, along with PTT, promote immunogenic cell death (ICD). This ICD triggers the release of damage-related molecular patterns and CD8+ lymphocyte infiltration sensitizes the immune checkpoint blockade (αPD-L1) response, thereby eliciting a systemic anti-tumor immune response. Collectively, this comprehensive treatment regimen, driven by environmentally stimulated multiple pathways, overcomes the limitations of single therapeutic modalities, thereby improving tumor outcomes. Additionally, these findings provide valuable insights for strategies aimed at modulating the tumor immune microenvironment.
Nanocarriers
Immunogenic cell death
Immune checkpoint
Cancer Immunotherapy
Cite
Citations (8)
Immunogenic cell death (ICD) has aroused widespread attention because it can reconstruct a tumor microenvironment and activate antitumor immunity. This study proposes a two-way enhancement of ICD based on a CaO2 @CuS-MnO2 @HA (CCMH) nanocomposite to overcome the insufficient damage-associated molecular patterns (DAMPs) of conventional ICD-inducers. The near-infrared (NIR) irradiation (1064 nm) of CuS nanoparticles generates 1 O2 through photodynamic therapy (PDT) to trigger ICD, and it also damages the Ca2+ buffer function of mitochondria. Additionally, CaO2 nanoparticles react with H2 O to produce a large amount of O2 and Ca2+ , which respectively lead to enhanced PDT and Ca2+ overload during mitochondrial damage, thereby triggering a robust ICD activation. Moreover, oxidative-damaged mitochondrial DNA, induced by PDT and released from tumor cells, reprograms the immunosuppressive tumor microenvironment by transforming tumor-associated macrophages to the M1 subphenotype. This study shows that CCMH with NIR-II irradiation can elicit adequate DAMPs and an active tumor-immune microenvironment for both 4T1 and CT26 tumor models. Combining this method with an immune checkpoint blockade can realize an improved immunotherapy efficacy and long-term protection effect for body.
Cancer Immunotherapy
Immunogenic cell death
Cite
Citations (127)
Immunogenic cell death
Cancer Immunotherapy
Cite
Citations (4)
Abstract Immunotherapy has pointed out a scientific and promising direction for cancer treatment through the rouse of immunosurveillance and the decrease of possible side effects in recent years. In immunotherapy, immunogenic cancer cell death (ICD) plays a critical role in regulating anti‐cancer immune system in vivo via the release of damage‐associated molecular patterns. ICD can not only induce in situ cancer cells apoptosis, but also arouse the immune response against metastatic tumors, which is of great clinical significance to eradicate tumors. In cancer immunotherapy, polymer nanoparticles have drawn increasing attention as an important component of ICD‐based immunotherapy attributing to their controllable size, excellent biocompatibility, promising ability of protecting cargo from surrounding environment, which delivers the antigens or immune inducers to antigen‐presenting cells, and further triggers sinnvoll T cell response. In this review, the recent advances in the development of polymeric material‐based nanosystems for ICD‐mediated cancer immunotherapy are summarized. The mechanism of ICD and some current restrictions inhibiting the efficiency of immunotherapy and future prospects are also discussed.
Immunosurveillance
Cancer Immunotherapy
Immunogenic cell death
Cite
Citations (17)
Nanoscience has long been lauded as a method through which tumor-associated barriers could be overcome. As successful as cancer immunotherapy has been, limitations associated with the tumor microenvironment or side effects of systemic treatment have become more apparent. In this Review, we seek to lay out the therapeutic challenges associated with the tumor microenvironment and the ways in which nanoscience is being applied to remodel the tumor microenvironment and increase the susceptibility of many cancer types to immunotherapy. We detail the nanomedicines on the cutting edge of cancer immunotherapy and how their interactions with the tumor microenvironment make them more effective than systemically administered immunotherapies.
Cancer Immunotherapy
Cite
Citations (206)
Immunogenic cell death (ICD) is a promising cancer immunotherapy by inducing antigen-presenting cell maturation. Many inorganic nanomodulators have been developed for cancer therapy via ion overload, and their ICD-inducing properties have also been explored for immunotherapy. Here, we report a potassium chloride nanoparticle (PCNP)-loaded poly(lactic-co-glycolic acid) nanoparticle coated with cancer cell membrane (PC@P-CCM) for cancer therapy. Through cancer cell membrane (CCM)-achieved surface functionalization, the homotypic targeting behaviors of PC@P-CCM are dramatically enhanced. Once internalized by cancer cells, the PC@P-CCM could be degraded in acidic lysosomes, thus releasing K+ and Cl- ions. These ions can change the osmotic pressure of cancer cells, causing a hypertonic state in the cancer cells in a short time and leading to the rupture and death of cancer cells. Furthermore, these ions can stimulate cancer cells to secrete adenosine triphosphate (ATP) and high mobility group box 1 (HMGB-1); meanwhile, calreticulin (CRT) showed increased presentation on the surface of cancer cells, which can further induce dendritic cell maturation and promote the immunotherapy. This work provides a new perspective on KCl nanoparticle-based cancer immunotherapy.
Cancer Immunotherapy
Inducer
Immunogenic cell death
Cite
Citations (7)