logo
    RW Aur A: SpeX Spectral Evidence for Differentiated Planetesimal Formation, Migration, and Destruction in an ∼3 Myr Old Excited CTTS System
    3
    Citation
    93
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    We present 2007 - 2020 SpeX VISNIR spectral monitoring of the highly variable RW Aur A CTTS. We find direct evidence for a highly excited, IR bright, asymmetric, and time variable system. Comparison of the spectral and temporal trends found determines 5 different components: (1) a stable continuum from 0.7 - 1.3 um, with approx color temperature 4000K, produced by the CTTS photospheric surface; (2) variable hydrogen emission lines emitted from hot excited hydrogen in the CTTSs protostellar atmosphere/accretion envelope; (3) hot CO gas in the CTTSs protostellar atmosphere/accretion envelope; (4) highly variable 1.8-5.0 um thermal continuum emission with color temperature ranging from 1130 to 1650K, due to a surrounding accretion disk that is spatially variable and has an inner wall at r = 0.04 AU and T = 1650K, and outer edges at approx 1200K; and (5) transient, bifurcated signatures of abundant Fe II + associated SI, SiI, and SrI in the systems jet structures. The bifuracted signatures first appeared in 2015, but these collapsed and disappeared into a small single peak protostellar atmosphere feature by late 2020. The temporal evolution of RW Aur As spectral signatures is consistent with a dynamically excited CTTS system forming differentiated Vesta-sized planetesimals in an asymmetric accretion disk and migrating them inward to be destructively accreted. By contrast, nearby, coeval binary companion RW Aur B evinces only (1) a stable WTTS photospheric continuum from 0.7 - 1.3 um + (3) cold CO gas in absorption + (4) stable 1.8-5.0 um thermal disk continuum emission with color temperature approx 1650K.
    Comet C/2016 R2 PanSTARRS (hereafter C/2016 R2) presents an unusually high N2/CO abundance ratio, as well as a heavy depletion in H2O, making it the only known comet of its kind. Understanding its dynamical history is therefore of essential importance as it would allow us to gain a clearer understanding of the evolution of planetesimal formation in our Solar System. Two studies have independently estimated the possible origin of this comet from building blocks formed in a peculiar region of the protoplanetary disk, near the ice line of CO and N2. We intend to investigate the fates of objects formed from the building blocks in these regions. We hope to find a possible explanation for the lack of C/2016 R2-like comets in our Solar System. Using a numerical simulation of the early stages of Solar System formation, we track the dynamics of these objects in the Jumping Neptune scenario based on five different initial conditions for the protosolar disk. We integrate the positions of 250 000 planetesimals over time in order to analyze the evolution of their orbits and create a statistical profile of their expected permanent orbit. Results. We find that objects formed in the region of the CO- and N2- ice lines are highly likely to be sent towards the Oort Cloud or possibly ejected from the Solar System altogether on a relatively short timescale. In all our simulations, over 90% of clones formed in this region evolved into a hyperbolic trajectory, and between 1% and 10% were potentially captured by the Oort Cloud. The handful of comets that remained were either on long-period, highly eccentric orbits like C/2016 R2, or absorbed into the Edgeworth-Kuiper belt. Comets formed <15 au were predominantly ejected early in the formation timeline. As this is the formation zone likely to produce comets of this composition, this process could explain the lack of similar comets observed in the Solar System
    Neptune
    Interstellar comet
    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the timescales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.
    Protoplanet
    Citations (4)
    Abstract— All terrestrial planets, the Moon, and small bodies of the inner solar system are subjected to impacts on their surface. The best witness of these events is the lunar surface, which kept the memory of the impacts that it underwent during the last 3.8 Gyr. In this paper, we review the recent studies at the origin of a reliable model of the impactor population in the inner solar system, namely the near‐Earth object (NEO) population. Then we briefly expose the scaling laws used to relate a crater diameter to body size. The model of the NEO population and its impact frequency on terrestrial planets is consistent with the crater distribution on the lunar surface when appropriate scaling laws are used. Concerning the early phases of our solar system's history, a scenario has recently been proposed that explains the origin of the Late Heavy Bombardment (LHB) and some other properties of our solar system. In this scenario, the four giant planets had initially circular orbits, were much closer to each other, and were surrounded by a massive disk of planetesimals. Dynamical interactions with this disk destabilized the planetary system after 500–600 Myr. Consequently, a large portion of the planetesimal disk, as well as 95% of the Main Belt asteroids, were sent into the inner solar system, causing the LHB while the planets reached their current orbits. Our knowledge of solar system evolution has thus improved in the last decade despite our still‐poor understanding of the complex cratering process.
    Asteroid belt
    Nice model
    A major area of difficulty in the cosmogony of the solar system is understanding how a large number of small planetesimals, which have condensed from the primordial gas, can aggregate into the ordered planetary system present today. Theories involving aggregation within a gaseous disc [e.g. Cameron (1973)] suffer the common difficulty that the particles, once condensed, are no longer supported by the radial gas pressure gradient and spiral rapidly in towards the Sun. Most of the planetesimals are dragged in to the central body in times several orders of magnitude less than would be required for larger bodies to accrete (Goldreich & Ward 1973).
    Cosmogony
    Citations (11)
    We present results of a detailed study of the rate of the accretion of planetesimals by a growing proto-Jupiter in the core-accretion model. Using a newly developed code, we accurately combine a detailed three-body trajectory calculation with gas drag experienced during the passage of planetesimals in the protoplanet's envelope. We find that the motion of planetesimals is excited to the extent that encounters with the proto-planetary envelope become so fast that ram pressure breaks up the planetesimals in most encounters. As a result, the accretion rate is largely independent of the planetesimal size and composition. For the case we explored of a planet forming at 5.2 AU from the Sun in a disk with a solid surface density of 6 g/cm^2 (Lozovsky et al. 2017) the accretion rate we compute differs in several respects from that assumed by those authors. We find that only 4-5 M_Earth is accreted in the first 1.5x10^6 years before the onset of rapid gas accretion. Most of the mass, some 10 M_Earth, is accreted simultaneously with this rapid gas accretion. In addition, we find that the mass accretion rate remains small, but non-zero for at least a million years after this point, and an additional 0.3-0.4 M_Earth is accreted during that time. This late accretion, together with a rapid infall of gas could lead to the accreted material being mixed throughout the outer regions, and may account for the enhancement of high-Z material in Jupiter's envelope.
    Protoplanet
    Giant planet
    Gas giant
    Citations (20)
    ABSTRACT Chondrules are one of the most primitive elements that can serve as a fundamental clue to the origin of our solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that leads to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s −1 . Previous simulations have shown that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct N -body simulations. As found in the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet–planetesimal collisions can achieve an impact velocity of about 2.5 km s −1 or higher, as protoplanets approach the isolation mass ( M p ,iso ). Assuming that the ejected mass is a fraction ( F ch ) of the colliding planetesimals’ mass, we show that the resultant abundance of chondrules is expressed well by F ch M p ,iso , as long as the formation of protoplanets is completed within a given disk lifetime. We perform a parameter study and examine how the abundance of chondrules and the timing of their formation change. We find that the impact jetting scenario generally works reasonably well for a certain range of parameters, while more dedicated work would be needed to include other physical processes that are neglected in this work and to examine their effects on chondrule formation.
    Protoplanet
    Chondrule
    Citations (12)
    Here we present an improved algorithm to model the serpentinization process in planetesimals in the early Solar system. Although it is hypothesized that serpentinization-like reactions played an important role in the thermal evolution of planetesimals, few and restricted models are available in this topic. These processes may be important as the materials involved were abundant in these objects. Our model is based on the model by (Gobi & Kereszturi 2017), and contains improvements in the consideration of heat capacities and lithospheric pressure, and in the calculation of the amount of interfacial water. Comparison of our results with previous calculations shows that there are significant differences in the e.g. the serpentinization time -- the time necessary to consume most of the reactants at specific initial conditions -- or the amount of heat produced by this process. In a simple application we show that in icy bodies, under some realistic conditions, below the melting point of water ice, serpentinization reaction using interfacial water may be able to proceed and eventually push the local temperature above the melting point to start a 'runaway' serpentinization. According to our calculations in objects with radii R $\gtrsim$ 200 km serpentinization might have quickly reformed nearly the whole interior of these bodies in the early Solar system.
    Citations (0)
    Abstract Here we present an improved algorithm to model the serpentinization process in planetesimals in the early solar system. Although it is hypothesized that serpentinization-like reactions played an important role in the thermal evolution of planetesimals, few and restricted models are available in this topic. These processes may be important, as the materials involved were abundant in these objects. Our model is based on the model by Góbi & Kereszturi and contains improvements in the consideration of heat capacities and lithospheric pressure and in the calculation of the amount of interfacial water. Comparison of our results with previous calculations shows that there are significant differences in, e.g., the serpentinization time—the time necessary to consume most of the reactants at specific initial conditions—or the amount of heat produced by this process. In a simple application we show that in icy bodies, under some realistic conditions, below the melting point of water ice, serpentinization reaction using interfacial water may be able to proceed and eventually push the local temperature above the melting point to start a “runaway” serpentinization. According to our calculations in objects with radii R ≳ 200 km, serpentinization might have quickly reformed nearly the whole interior of these bodies in the early solar system.
    Citations (6)