logo
    Pediatric biorepository participation during the COVID-19 pandemic: predictors of enrollment and biospecimen donation
    2
    Citation
    30
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Patient-level predictors of enrollment in pediatric biorepositories are poorly described. Especially in pandemic settings, understanding who is likely to enroll in a biorepository is critical to interpreting analyses conducted on biospecimens. We describe predictors of pediatric COVID-19 biorepository enrollment and biospecimen donation to identify gaps in COVID-19 research on pediatric biospecimens.We compared data from enrollees and non-enrollees aged 0-25 years with suspected or confirmed COVID-19 infection who were approached for enrollment in the Massachusetts General Hospital pediatric COVID-19 biorepository between April 12, 2020, and May 28, 2020, from community or academic outpatient or inpatient settings. Demographic and clinical data at presentation to care were from automatic and manual chart extractions. Predictors of enrollment and biospecimen donation were assessed with Poisson regression models.Among 457 individuals approached, 214 (47%) enrolled in the biorepository. A COVID-19 epidemiologic risk factor was recorded for 53%, and 15% lived in a US Centers for Disease Control and Prevention-defined COVID-19 hotspot. Individuals living in a COVID-19 hotspot (relative risk (RR) 2.4 [95% confidence interval (CI): 1.8-3.2]), with symptoms at presentation (RR 1.8 [95% CI: 1.2-2.7]), or admitted to hospital (RR 1.8 [95% CI: 1.2-2.8]) were more likely to enroll. Seventy-nine percent of enrollees donated any biospecimen, including 97 nasopharyngeal swabs, 119 oropharyngeal swabs, and 105 blood, 16 urine, and 16 stool specimens, respectively. Age, sex, race, ethnicity, and neighborhood-level socioeconomic status based on zip code did not predict enrollment or biospecimen donation.While fewer than half of individuals approached consented to participate in the pediatric biorepository, enrollment appeared to be representative of children affected by the pandemic. Living in a COVID-19 hotspot, symptoms at presentation to care and hospital admission predicted biorepository enrollment. Once enrolled, most individuals donated a biospecimen.
    Keywords:
    Biorepository
    Pandemic
    The Beaumont BioBank model is a multidisciplinary facility that is designed to provide access and opportunity for research-minded clinicians to become involved in research without the need for their own research infrastructure, thus increasing the research effort across the Health System. We describe a biobank model that works primarily in operating rooms for tissue collection and utilizes a generic consent process to facilitate rapid and accurate collection of biospecimens. The model combines both a biorepository that collects specimens based on clinical questions and also a translational research facility that undertakes biomarker-based research on those specimens in a seamless and efficient process. We believe that the Beaumont BioBank model would be readily applicable and reproducible in other academic healthcare systems.
    Biorepository
    Translational Research
    Citations (5)
    Over the past 5 years, using European and North American biobanks as models, the grass-roots establishment of independently operating biobanks has occurred virtually simultaneously in large Israeli teaching hospitals. The process of establishing a national biorepository network in Israel has progressed slowly, sustained mainly by a few proponents working together on a personal level. Slow progress has been due to limited funding and the lack of a legal framework specific to biobanking activities. Recently, due to increasing pressure from the scientific community, the government has earmarked funds for a national biorepository network, and the structure is now being established. In forming a network, Israel's biobanks face certain difficulties, particularly lack of support. Additional challenges include harmonization of standard operating procedures, database centralization, and use of a common informed consent form. In this article, we highlight some of the issues faced by Israel's biobank managers in establishing and sustaining a functional biobank network, information that could provide guidance for other small countries with limited resources.
    Biorepository
    Harmonization
    Citations (6)
    As health research increasingly relies on biospecimens and associated data, new demands have emerged for biorepositories to provide assurances of the quality of their overall operations, not just assurances of the quality of the biospecimens and data that they hold. The biobanking community has responded in various ways, including the creation of two different programs to disseminate biobanking best practices. This article describes in detail the Canadian Tissue Repository Network (CTRNet) Biobank Certification Program and the College of American Pathologists (CAP) Biorepository Accreditation Program. Despite differences in their approaches, these programs share one key element—assessment of biobanking practices by an external organization. In the absence of a single internationally endorsed biobanking best practices dissemination program, the CTRNet and CAP programs provide two different solutions, each contributing to the pursuit of enhanced quality in biobanking.
    Biorepository
    Citations (27)
    The development of Biobanks and recent advances in molecular biology have enhanced the possibility to accelerate translational research studies. The Interinsti- tutional Multidisciplinary BioBank (BioBIM) is organized in a large healthy donors collection and pathology-based biobanks with the aim to provide a service for development of interdisciplinary studies. A new pathology-based biobank has been organized to specifically collect biospecimen from patients affected by migraine, with the final goal to centralize data, collect blood, plasma, serum, DNA and RNA of patients with this disease. The BioBIM is fully equipped for the automation of sampling/processing, storage and tracking of biospecimens. Standard Operating Procedures have been developed for processing and storage phases as well as archive of clinical data. The availability of biospecimens and clinical data will constitute a resource for various research projects.
    Biorepository
    Translational Research
    Citations (0)
    Resources from biobanks and biorepositories, such as human samples, are of increasing interest to specialists in various fields. However, whilst biobanks provide a crucial service, their efficient and effective management can prove challenging. When establishing a biobank many factors should be considered, such as the need for appropriate infrastructure, equipment, financial support, and highly specialised and suitably qualified personnel. The number and qualifications of the necessary personnel depend both on the biobank's size and type - i.e. a biobank that is large and diversified in terms of the stored material should be organised differently to a small biorepository. The core of the biobank should be composed of highly trained personnel that closely co-operate with the general and quality control manager. Due to the large amount of data related to the samples, an IT specialist might be needed. In the case of large population biobanks, personnel responsible for patient recruitment, documentation handling, sample collection and distribution to the biobank would be necessary. Furthermore, staff responsible for the infrastructure are also highly important, as they are the first responders to failures that may be critical for the biobank functioning. Depending on the type and size of the biobank/biorepository, some responsibilities and tasks could potentially be combined. Nevertheless, highly trained personnel with clear and precisely defined duties are the key to the proper functioning of a biobank.
    Biorepository
    Citations (8)