Aberrant GATA2 Activation in Pediatric B-Cell Acute Lymphoblastic Leukemia
7
Citation
48
Reference
10
Related Paper
Citation Trend
Abstract:
GATA2 is a transcription factor that is critical for the generation and survival of hematopoietic stem cells (HSCs). It also plays an important role in the regulation of myeloid differentiation. Accordingly, GATA2 expression is restricted to HSCs and hematopoietic progenitors as well as early erythroid cells and megakaryocytic cells. Here we identified aberrant GATA2 expression in B-cell acute lymphoblastic leukemia (B-ALL) by analyzing transcriptome sequencing data obtained from St. Jude Cloud. Differentially expressed genes upon GATA2 activation showed significantly myeloid-like transcription signature. Further analysis identified several tumor-associated genes as targets of GATA2 activation including BAG3 and EPOR. In addition, the correlation between KMT2A-USP2 fusion and GATA2 activation not only indicates a potential trans-activating mechanism of GATA2 but also suggests that GATA2 is a target of KMT2A-USP2. Furthermore, by integrating whole-genome and transcriptome sequencing data, we showed that GATA2 is also cis activated. A somatic focal deletion located in the GATA2 neighborhood that disrupts the boundaries of topologically associating domains was identified in one B-ALL patient with GATA2 activation. These evidences support the hypothesis that GATA2 could be involved in leukemogenesis of B-ALL and can be transcriptionally activated through multiple mechanisms. The findings of aberrant activation of GATA2 and its molecular function extend our understanding of transcriptional factor dysregulation in B-ALL.Keywords:
GATA2
Cite
Citations (109)
PU.1 is a member of the Ets transcription family and is predominantly expressed in haematopoietic cells such as myeloid cells and B lymphoid cells.PU.1 regulates the expression of a number of myeloid gene and the haematopoietic differentiation.The disruption of PU.1 function is involved in acute myeloid leukemia.
IRF8
Cite
Citations (0)
GATA2
Haploinsufficiency
IRF8
Progenitor
Cite
Citations (0)
GATA2
GATA transcription factor
GATA1
Cite
Citations (126)
GATA2
GATA1
GATA transcription factor
Transcription
Hematopoietic stem cell
Cite
Citations (152)
5-Hydroxymethylcytosine
Cite
Citations (0)
Mechanisms underlying differentiation of embryonic hematopoietic stem/progenitor cells (HSPCs) remain unclear. In mouse, intra-aortic clusters (IACs) form in the aorta-gonad-mesonephros region and acquire HSPC potential after 9.5 days postcoitum (dpc). In this study we demonstrate that Twist1 is highly expressed in c-Kit+CD31+CD34+ IACs, which are equivalent to embryonic HSPCs, compared with adult HSPCs. Progenitor activities of colony-forming unit (CFU) of granulocytes and macrophages, CFU of macrophages, burst-forming unit of erythroid, and B lymphopoiesis were impaired in IACs of Twist1-/- relative to wild-type embryos. Microarray analysis and real-time polymerase chain reaction showed downregulated expression of Myb and Gata2 transcripts in Twist1-/- IACs. Chromatin immunoprecipitation and promoter binding assays indicated that Twist1 directly binds the Myb and Gata2 promoters in 10.5-dpc IACs. We conclude that Twist1 is a novel transcriptional regulator of HSPC differentiation through direct binding to promoter regions of key regulators of the process.
GATA2
MYB
GATA transcription factor
Cite
Citations (12)
RNA-binding proteins of the Musashi (Msi) family are expressed in stem cell compartments and in aggressive tumors, but they have not yet been widely explored in the blood. Here we demonstrate that Msi2 is the predominant form expressed in hematopoietic stem cells (HSCs), and its knockdown leads to reduced engraftment and depletion of HSCs in vivo. Overexpression of human MSI2 in a mouse model increases HSC cell cycle progression and cooperates with the chronic myeloid leukemia-associated BCR-ABL1 oncoprotein to induce an aggressive leukemia. MSI2 is overexpressed in human myeloid leukemia cell lines, and its depletion leads to decreased proliferation and increased apoptosis. Expression levels in human myeloid leukemia directly correlate with decreased survival in patients with the disease, thereby defining MSI2 expression as a new prognostic marker and as a new target for therapy in acute myeloid leukemia (AML).
Cite
Citations (9)
Cite
Citations (15)
GATA2
GATA1
GATA transcription factor
IRF8
Lineage (genetic)
GATA3
Monocyte
Cite
Citations (5)