logo
    Keywords:
    Proopiomelanocortin
    Expression (computer science)
    Mechanical unloading of the rat heart increases both protein synthesis and protein degradation. The transcriptional mechanism underlying increased protein synthesis during atrophic remodeling is not known. The aim of this study was to identify transcriptional regulators and the gene expression profile regulating protein synthesis in the unloaded rat heart and in the unloaded failing human heart. We measured DNA binding activity, transcript levels, and protein expression of transcriptional regulators of protein synthesis in a model of atrophic remodeling induced by heterotopic transplantation of the rat heart (duration 1 and 7 days). Using microarray analysis and quantitative RT-polymerase chain reaction, we found an increase in c-myc-regulated gene expression including an induction of ribosomal subunit messenger RNA's (RPS 10, RPL 21) and rRNA (18S). Consistent with the gene expression profile, DNA binding activity of c-myc and the nuclear protein concentration of its coactivator, upstream binding factor (UBF), increased in the atrophied heart whereas protein levels of the c-myc inhibitor MAD1 decreased. We found the same increase of ribosomal subunit messenger RNA and rRNA in 21 paired samples of failing human hearts obtained before and after left ventricular assist device treatment (mean duration: 157+/-31 days). In summary, mechanical unloading increases c-myc activity and c-myc-regulated gene expression in the rat heart. Changes in transcript levels of genes regulating ribosomal biogenesis in the unloaded rat heart resemble those found in the unloaded failing human heart. We concluded c-myc and c-myc-regulated gene expression are transcriptional regulators of protein synthesis during atrophic remodeling of the heart.
    Ribosomal protein
    Citations (20)
    Mechanical unloading of the heart with a left ventricular assist device (LVAD) significantly decreases mortality in patients with heart failure. Moreover, it provides a human model to define the critical regulatory genes governing myocardial remodeling in response to significant reductions in wall stress. Statistical analysis of a gene expression library of 19 paired human heart samples harvested at the time of LVAD implant and again at explant revealed a set of 22 genes that were downregulated and 85 genes that were upregulated in response to mechanical unloading with a false discovery rate of less than 1%. The analysis revealed a high percentage of genes involved in the regulation of vascular networks including neuropilin-1 (a VEGF receptor), FGF9, Sprouty1, stromal-derived factor 1, and endomucin. Taken together these findings suggest that mechanical unloading alters the regulation of vascular organization and migration in the heart. In addition to vascular signaling networks, GATA-4 binding protein, a critical mediator of myocyte hypertrophy, was significantly downregulated following mechanical unloading. In summary, these findings may have important implications for defining the role of mechanical stretch and load on autocrine/paracrine signals directing vascular organization in the failing human heart and the role of GATA-4 in orchestrating reverse myocardial remodeling. This unbiased gene discovery approach in paired human heart samples has the potential to provide critical clues to the next generation of therapeutic treatments aimed at heart failure.
    Fetal alcohol exposure (FAE) causes various neurodevelopmental deficits in offspring, including reduced expression of the stress regulatory proopiomelanocortin (Pomc) gene and an elevated stress response for multiple generations via the male germline. Male germline-specific effects of FAE on the Pomc gene raises the question if the sex-determining region Y (SRY) may have a role in regulating Pomc gene expression. Using a transgenerational model of FAE in Fischer 344 rats, we determined the role of SRY in the regulation of the Pomc gene. FAEs, like on the Pomc gene, reduced Sry gene expression in sperm and the mediobasal hypothalamus (MBH) in male adult offspring. Fetal alcohol-induced inhibition of Sry gene expression was associated with increased Sry promoter DNA methylation. Additionally, fetal alcohol effects on the Sry gene persisted for three generations in the male germline but not in the female germline. Sry gene knockdown reduced the Pomc gene expression. Sry recruitment onto the Pomc promoter was found to be reduced in the hypothalamus of fetal alcohol-exposed rats compared to control rats. Pomc promoter luciferase activity was increased following Sry overexpression. A site-directed mutagenesis study revealed that SRY binding sites are required for POMC promoter transcription activity. Overall, these findings suggest that SRY plays a stimulatory role in the regulation of Pomc gene expression and may potentially contribute to the fetal alcohol-induced changes in the level of Pomc gene expression for multiple generations.
    Testis determining factor
    Proopiomelanocortin
    Citations (1)