logo
    Noonan‐like syndrome with loose anagen hair (NS/LAH; OMIM 607721) is a developmental disorder clinically related to Noonan syndrome (NS) and characterized by facial dysmorphisms, postnatal growth retardation, cardiac anomalies (in particular dysplasia of the mitral valve and septal defects), variable neurocognitive impairment, and florid ectodermal features. A distinctive trait of NS/LAH is its association with easily pluckable, slow growing, sparse, and thin hair. This rare condition is due to the invariant c.4A > G missense (p.Ser2Gly) change in SHOC2 , which encodes a regulatory protein that participate in RAS signaling. Here we report two patients with molecularly confirmed NS/LAH, with extremely different phenotypic expression, in particular concerning the severity of the cardiac phenotype and neurocognitive profile. While the first available clinical records outlined a relatively homogeneous phenotype in NS/LAH, the present data emphasize that the phenotype spectrum associated with this invariant mutation is wider than previously recognized. © 2014 Wiley Periodicals, Inc.
    Noonan Syndrome
    Haploinsufficiency
    Neurocognitive
    Variable Expression
    Citations (25)
    The RASopathies comprise a group of clinically overlapping developmental syndromes the common pathogenetic basis of which is dysregulated signal flow through the RAS-MAPK pathway. Mutations in several components or modifiers of the pathway have been identified in Noonan syndrome and related disorders. Over the past years copy number variants (CNVs) encompassing RAS pathway genes (PTPN11, RAF1, MEK2, or SHOC2) have been reported in children with developmental syndromes. These observations raised speculations that the associated phenotypes represent RASopathies, implying that the increased or reduced expression of the respective RAS pathway component and a consecutive dysregulation of RAS pathway signalling is responsible for the clinical picture. Herein, we present two individuals and three of their relatives harboring duplications of either 3p25.2 including the RAF1 locus or 19p13.3 including the MEK2 locus. Duplication carriers exhibited variable clinical phenotypes including non-specific facial dysmorphism, short stature, and learning difficulties. A careful review of the literature supported the impression that phenotypes associated with CNVs including RAS pathway genes commonly share non-specific symptoms with RASopathies, while the characteristic "gestalt" is lacking. Considering the known molecular pathogenesis of RASopathies, it is questionable that a modest increase in the expression of a functionally normal signaling component can mimic the effects of a qualitatively abnormal (hyperactive) mutant protein. We thus argue that current empirical and biological evidence is still insufficient to allow the conclusion that an altered copy number of a RAS pathway component is indeed the mechanism that is critical for the phenotype associated with CNVs including RASopathy genes.
    Costello syndrome
    PTPN11
    Noonan Syndrome
    Citations (14)
    1q24q25 deletions cause a distinctive phenotype including proportionate short stature, microcephaly, brachydactyly, dysmorphic facial features and intellectual disability. We present a mother and son who have a 672 kb microdeletion at 1q24q25. They have the typical skeletal features previously described but do not have any associated intellectual disability. We compare the genes within our patients' deletion to those in the deletions of previously reported cases. This indicates two genes that may be implicated in the intellectual disability usually associated with this deletion syndrome; PIGC and C1orf105 . In addition, our cases provide supporting evidence to recent published work suggesting that the skeletal features may be linked to the microRNAs miR199 and miR214 , encoded within intron 14 of the Dynamin‐3 gene.
    Brachydactyly
    Microcephaly
    Citations (12)
    Mutations in ROR2, encoding a receptor tyrosine kinase, can cause autosomal recessive Robinow syndrome (RRS), a severe skeletal dysplasia with limb shortening, brachydactyly, and a dysmorphic facial appearance. Other mutations in ROR2 result in the autosomal dominant disease, brachydactyly type B (BDB1). No functional mechanisms have been delineated to effectively explain the association between mutations and different modes of inheritance causing different phenotypes. BDB1-causing mutations in ROR2 result from heterozygous premature termination codons (PTCs) in downstream exons and the conveyed phenotype segregates as an autosomal dominant trait, whereas heterozygous missense mutations and PTCs in upstream exons result in carrier status for RRS. Given that the distribution of PTC mutations revealed a correlation between the phenotype and the mode of inheritance conveyed, we investigated the potential role for the nonsense-mediated decay (NMD) pathway in the abrogation of possible aberrant effects of selected mutant alleles. Our experiments show that triggering or escaping NMD may cause different phenotypes with a distinct mode of inheritance. We generalize these findings to other disease-associated genes by examining PTC mutation distribution correlation with conveyed phenotype and inheritance patterns. Indeed, NMD may explain distinct phenotypes and different inheritance patterns conveyed by allelic truncating mutations enabling better genotype-phenotype correlations in several other disorders.
    Nonsense-Mediated Decay
    Nonsense
    Nonsense mutation
    Noonan syndrome (NS) is an autosomal dominant disorder, with variable phenotypic expression, characterized by short stature, facial dysmorphisms and heart disease. Different genes of the RAS/MAPK signaling pathway are responsible for the syndrome, the most common are: PTPN11, SOS1, RAF1, and KRAS. The objective of this study was to report a patient with Noonan syndrome presenting mutations in two genes of RAS/MAPK pathway in order to establish whether these mutations lead to a more severe expression of the phenotype. We used direct sequencing of the PTPN11, SOS1, RAF1, and KRAS genes. We have identified two described mutations in heterozygosity: p.N308D and p.R552G in the genes PTPN11 and SOS1, respectively. The patient has typical clinical features similar to the ones with NS and mutation in only one gene, even those with the same mutation identified in this patient. A more severe or atypical phenotype was not observed, suggesting that these mutations do not exhibit an additive effect.
    PTPN11
    Noonan Syndrome
    Costello syndrome
    Noonan syndrome is characterized by variable phenotypic expressivity with characteristic dysmorphic facial features, varying degrees of intellectual disability, developmental delay, short stature, and congenital heart defects in 50-80%. Other findings include a webbed neck, cryptorchidism, coagulation defects and eye abnormalities. Thus far, Noonan syndrome has mainly been attributed to heterozygous pathogenic variants in 10+ different genes, with the rare exception of cases due to biallelic pathogenic variants in LZTR1. Recently, homozygous loss-of-function variants in SPRED2 have been identified as a cause of a recessive Noonan syndrome-like phenotype. We present the phenotypes of two additional patients with homozygosity for a previously unreported loss-of-function variant in SPRED2, thereby adding relevant clinical information about the recently described Noonan syndrome-like SPRED2-related phenotype.
    Noonan Syndrome
    Loss function
    Expressivity
    Noonan syndrome (NS) is an autosomal dominant multisystem condition with a variable phenotype. The most characteristic features are short stature, congenital heart defects, and recognizable facial features. Mutations in SOS1 are found in 10–20% of patients with NS. Different genotype–phenotype studies mention correlations between SOS1 mutations and some features, such as ectodermal abnormalities and specific facial features. We present a large NS family with a novel pathogenic mutation; SOS1 c.3134C>G, p.Pro1045Arg. Ten family members with NS are included with genetically confirmed mutation and clinical evaluation. The phenotype shows a broad spectrum from only few suggestive features for NS in the older generation to typical features in the youngest generation. We report on a novel pathogenic mutation in the SOS1 gene and a large clinical spectrum in a NS family with ten genetically confirmed affected individuals.
    Noonan Syndrome
    Variable Expression
    Citations (8)