logo
    Epigenetic DNA Modifications Upregulate SPRY2 in Human Colorectal Cancers
    8
    Citation
    54
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Conventional wisdom is that Sprouty2 (SPRY2), a suppressor of Receptor Tyrosine Kinase (RTK) signaling, functions as a tumor suppressor and is downregulated in many solid tumors. We reported, for the first time, that increased expression of SPRY2 augments cancer phenotype and Epithelial-Mesenchymal-Transition (EMT) in colorectal cancer (CRC). In this report, we assessed epigenetic DNA modifications that regulate SPRY2 expression in CRC. A total of 4 loci within SPRY2 were evaluated for 5mC using Combined Bisulfite Restriction Analysis (COBRA). Previously sequenced 5hmC nano-hmC seal data within SPRY2 promoter and gene body were evaluated in CRC. Combined bioinformatics analyses of SPRY2 CRC transcripts by RNA-seq/microarray and 450K methyl-array data archived in The Cancer Genome Atlas (TCGA) and GEO database were performed. SPRY2 protein in CRC tumors and cells was measured by Western blotting. Increased SPRY2 mRNA was observed across several CRC datasets and increased protein expression was observed among CRC patient samples. For the first time, SPRY2 hypomethylation was identified in adenocarcinomas in the promoter and gene body. We also revealed, for the first time, increases of 5hmC deposition in the promoter region of SPRY2 in CRC. SPRY2 promoter hypomethylation and increased 5hmC may play an influential role in upregulating SPRY2 in CRC.
    Keywords:
    Bisulfite sequencing
    Abstract Heat stress affects muscle development and meat quality in food animals; however, little is known regarding its regulatory mechanisms at the epigenetic level, such as via DNA methylation. In this study, we aimed to compare the DNA methylation profiles between control and heat-stressed pigs to identify candidate genes for skeletal muscle development and meat quality. Whole-genome bisulfite sequencing was used to investigate the genome-wide DNA methylation patterns in the longissimus dorsi muscles of the pigs. Both groups showed similar proportions of methylation at CpG sites but exhibited different proportions at non-CpG sites. A total of 57,147 differentially methylated regions were identified between the two groups, which corresponded to 1,422 differentially methylated genes. Gene ontogeny and KEGG pathway analyses indicated that these were mainly involved in energy and lipid metabolism, cellular defense and stress responses and calcium signaling pathways. This study revealed the global DNA methylation pattern of pig muscle between normal and heat stress conditions. The result of this study might contribute to a better understanding of epigenetic regulation in pig muscle development and meat quality.
    Bisulfite sequencing
    CpG site
    Differentially methylated regions
    Bisulfite
    KEGG
    Citations (78)
    Epigenetics describes the study of cellular modifications that can modify the expression of genes without changing the DNA sequence. DNA methylation is one of the most stable and prevalent epigenetic mechanisms. Twin studies have been a valuable model for unraveling the genetic and epigenetic epidemiology of complex traits, and now offer a potential to dissect the factors that impact DNA methylation variability and its biomedical significance. The twin design specifically allows for the study of genetic, environmental and lifestyle factors, and their potential interactions, on epigenetic profiles. Furthermore, genetically identical twins offer a unique opportunity to assess nongenetic impacts on epigenetic profiles. Here, we summarize recent findings from twin studies of DNA methylation profiles across tissues, to define current knowledge regarding the genetic and nongenetic factors that influence epigenetic variation.
    Citations (30)
    DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.
    Bisulfite sequencing
    Bisulfite
    Differentially methylated regions
    Citations (0)
    Abstract DNA methylation can contribute to the maintenance of genome integrity and regulation of gene expression. In most situations, DNA methylation patterns are inherited quite stably. However, changes in DNA methylation can occur at some loci as a result of tissue culture resulting in somaclonal variation. A sequence-capture bisulfite sequencing approach was implemented to monitor context-specific DNA methylation patterns in ~15Mb of the maize genome for a population of plants that had been regenerated from tissue culture. Plants that have been regenerated from tissue culture exhibit gains and losses of DNA methylation at a subset of genomic regions. There was evidence for a high rate of homozygous changes to DNA methylation levels that occur consistently in multiple independent tissue culture lines suggesting the existence of a targeted process for altering epigenetic state during tissue culture. The consistent changes induced by tissue culture include both gains and losses of DNA methylation and can affect CG, CHG or both contexts within a region. The majority of changes in DNA methylation exhibit stable inheritance although there is some evidence for stochastic reacquisition of the initial epigenetic state in some individuals. This study provides insights into the susceptibility of some loci and potential mechanisms that could contribute to altered DNA methylation and epigenetic state that occur during tissue culture in plant species.
    Bisulfite sequencing
    Epigenomics
    Somaclonal variation
    Differentially methylated regions
    RNA-Directed DNA Methylation
    Citations (3)
    TOBACCO AND DNA METHYLATION THE CASE FOR EPIGENETIC ALTERATIONS The mechanisms of the long-term impacts of exposure to chemical substances remain poorly understood. While genotoxic and mutagenic effects have been well characterized, epigenetic mechanisms such as DNA methylation could also account for the delayed effects of exposures. It is in the case of tobacco that the strongest arguments for a role of these mechanisms have been obtained in human populations. This text presents recent data on this issue demonstrating the plausibility of epigenetic mechanisms to explain the persistence of biological signals long after stopping exposure.
    Epigenesis
    Citations (0)
    Transient nutritional exposures during critical ontogenic periods can cause persistent changes in gene expression, metabolism, and risk of various diseases. We have been investigating whether such ‘developmental programming’ occurs via nutritional influences on developmental epigenetics. Our studies in agouti viable yellow and axin-fused mice showed that developmental establishment of DNA methylation at ‘metastable epialleles’ is especially sensitive to maternal nutritional status around the time of conception. At metastable epialleles, DNA methylation is established stochastically in the early embryo and subsequently maintained during differentiation of diverse lineages, resulting in systemic interindividual epigenetic variation that is not genetically mediated. Lately, using a multiple-tissue screen for interindividual variation in DNA methylation, we have identified human genomic regions that appear to be metastable epialleles. Stochastic establishment of DNA methylation at these loci is affected by maternal nutrition around the time of conception, consistent across multiple tissues, and stable for many years. Most recently, our studies using genome-wide bisulfite sequencing have identified candidate metastable epialleles that are associated with human disease, providing exciting opportunities for epigenetic epidemiology.
    Epigenesis
    Epigenomics
    Genomic Imprinting
    Citations (0)
    Bisulfite sequencing
    CpG site
    Illumina Methylation Assay
    Differentially methylated regions