Molecular Therapeutics of Non-Small Cell Lung Cancer (NSCLC) and Challenges in Repeat Tissue Biopsy
2
Citation
70
Reference
10
Related Paper
Citation Trend
Abstract:
With advances in targeted and personalized treatment for lung cancer, molecular analysis of tumors is routinely performed for sequencing of treatment options in patients with advanced non-small-cell lung cancer (NSCLC). Oncogene addiction due to driver mutations includes EGFR exon 20 insertion mutations, MET amplification, EML4-AL, KRAS G12C point mutations, RET rearrangements, HER2 amplification and mutations, and FGFR amplification and translocations. A re-biopsy at the time of tumor recurrence or progression after first-line treatment failure is important for further molecular assessment and personalized therapy. However, repeat tumor biopsies are fraught with challenges including access to the tumor, sample inadequacy, patient consent, patient performance status, safety, or physician's choice or assessment. Cytological specimens are gaining importance but are limited due to validation difficulties. Liquid biopsies, which are minimally invasive have shown promise to assess dynamic biomarkers using ctDNA analysis and are thus frequently considered in routine clinical practice in advanced NSCLC patients to guide further targeted treatment. Here we present a comprehensive review that emphasizes the significance of performing tumor re-biopsy in advanced stage NSCLC patients following resistance to first-line treatment and simultaneously highlights the current challenges in performing the same and the current status and future perspectives of liquid biopsy in NSCLC.Keywords:
Liquid biopsy
Targeted Therapy
e19324 Background: KRAS G12C mutations are present in 15% of non-small cell lung cancer (NSCLC) and have recently been shown to confer sensitivity to KRAS(G12C) inhibitors. This study aims to assess the clinical features and outcomes with KRAS G12C mutant NSCLC in a real-world setting. Methods: Patients enrolled in an Australian prospective cohort study, Thoracic Malignancies Cohort (TMC), between July 2012 to October 2019 with metastatic or recurrent non-squamous NSCLC, with available KRAS test results, and without EGFR, ALK, or ROS1 gene aberrations, were selected. Data was extracted from TMC and patient records. Clinicopathologic features, treatment and overall survival was compared for KRAS wildtype ( KRAS WT ) and KRAS mutated ( KRAS mut ) patients, and between KRAS G12C ( KRAS G12C ) and other ( KRAS other ) mutations. Results: Of 1386 patients with non squamous NSCLC, 1040 were excluded for: non metastatic or recurrent (526); KRAS not tested (356); ALK, EGFR or ROS1 positive (154); duplicate (4). Of 346 patients analysed, 202 (58%) were KRAS WT and 144 (42%) were KRAS mut , of whom 65 (45%) were KRAS G12C . 100% of pts with KRAS G12C were smokers, compared to 92% of KRAS other and 83% of KRAS WT . The prevalence of brain metastases over entire follow-up period was similar between KRAS mut and KRAS WT (33% vs 40%, p = 0.17), and KRAS G12C and KRAS other (40% vs 41%, p = 0.74). Likewise, there was no difference in the proportion of patients receiving one or multiple lines of systemic therapy. Overall survival (OS) was also similar between KRAS mut and KRAS WT (p = 0.54), and KRAS G12C and KRAS other (p = 0.39). Conclusions: In this real-world prospective cohort, patients had comparable clinical features regardless of having a KRAS mut , KRAS G12C or KRAS other mutation, or being KRAS WT . Treatment and survival were also similar between groups. While not prognostic, KRAS G12C may be an important predictive biomarker as promising KRAS G12C covalent inhibitors continue to be developed.
Cite
Citations (3)
Lung cancer is one of the most serious malignant diseases in the world.More than one million people die from lung cancer each year.And the mortality and morbidity of lung cancer are increasing year by year,which attracts the great attention of a number of researchers.Non-small cell lung cancer accounts for 80% to 85 % of the total number of lung cancer.In recent years,molecular targeted therapy has become a focus of study for non-small cell lung cancer.This therapy is the most promising method and strategy of the treatment of lung cancer in the 21st century.
Key words:
Non-small cell lung cancer; Molecular targeted therapy
Targeted Therapy
Cancer Therapy
Cite
Citations (0)
Abstract Background : KRAS is the most frequently mutated oncogene in cancer, however efforts to develop targeted therapies have been largely unsuccessful. Recently, two small-molecule inhibitors, AMG 510 and MRTX849, have shown promising activity in KRAS G12C-mutant solid tumors. The current study aims to assess the molecular profile of KRAS G12C in colorectal (CRC) and non-small-cell lung cancer (NSCLC) tested in a clinical certified laboratory. Methods : CRC and NSCLC samples submitted for KRAS testing between 2017 and 2019 were reviewed. CRC samples were tested for KRAS and NRAS by pyrosequencing, while NSCLC samples were submitted to next generation sequencing of KRAS, NRAS, EGFR, and BRAF. Results : The dataset comprised 4,897 CRC and 4,686 NSCLC samples. Among CRC samples, KRAS was mutated in 2,354 (48.1%). Most frequent codon 12 mutations were G12D in 731 samples (15.2%) and G12V in 462 (9.6%), followed by G12C in 167 (3.4%). KRAS mutations were more frequent in females than males (p=0.003), however this difference was exclusive of non-G12C mutants (p<0.001). KRAS mutation frequency was lower in the South and North regions (p=0.003), but again KRAS G12C did not differ significantly (p=0.80). In NSCLC, KRAS mutations were found in 1,004 samples (21.4%). As opposed to CRC samples, G12C was the most common mutation in KRAS, in 346 cases (7.4%). The frequency of KRAS G12C was higher in the South and Southeast regions (p=0.012), and lower in patients younger than 50 years (p<0.001). KRAS G12C mutations were largely mutually exclusive with other driver mutations; only 11 NSCLC (3.2%) and 3 CRC (1.8%) cases had relevant co-mutations. Conclusions : KRAS G12C presents in frequencies higher than several other driver mutations, represent a large volume of patients in absolute numbers. KRAS testing should be considered in all CRC and NSCLC patients, independently of clinical or demographic characteristics.
Pyrosequencing
Cite
Citations (2)
: Lung cancer remains the leading cause of cancer-related deaths worldwide. However, significant progress has been made individualizing therapy based on molecular aberrations (e.g., EGFR, ALK) and pathologic subtype. KRAS is one of the most frequently mutated genes in non-small cell lung cancer (NSCLC), found in approximately 30% of lung adenocarcinomas, and is thus an appealing target for new therapies. Although no targeted therapy has yet been approved for the treatment of KRAS-mutant NSCLC, there are multiple potential therapeutic approaches. These may include direct inhibition of KRAS protein, inhibition of KRAS regulators, alteration of KRAS membrane localization, and inhibition of effector molecules downstream of mutant KRAS. This article provides an overview of the KRAS pathway in lung cancer and related therapeutic strategies under investigation.
Targeted Therapy
Cite
Citations (112)
Liquid biopsy
Cite
Citations (0)
At present, pancreatic ductal adenocarcinama (PDAC) is one of the deadliest malignant solid tumors, with poor prognosis and 5-year survival rate of 5%. Although understanding of the pathogenesis has greatly been improved for nearly two decades, there isn't a breakthrough in clinical therapy of the PDAC, and finding a new and effective therapy is badly needed. Genetic analysis showed that KRAS was one of the earliest and great probability mutated gene in the PDAC, played a significant role in initiation, progression, and metastasis of cancer, and predicted to being a good target of anti-PDAC. But a KRAS-targeted effective drug is lacking in clinic. The direct KRAS-targeted therapy will bright prospects. Meanwhile, locking localization and activity of cell membrane through post-translational modifications to KRAS combined with inhibiting KRAS downstream pathway is a good way of the KRAS-targeted PDAC therapy.
Key words:
Pancreatic ductal adenocarcinama; Pancreatic neoplasms; KRAS; Mutation; Targeted therapy
Targeted Therapy
Cite
Citations (0)
Abstract The Kirsten rat sarcoma virus transforming protein (KRAS) mutations (predominate in codons 12, 13, and 61) and genomically drive nearly one-third of lung carcinomas. These mutations have complex functions in tumorigenesis, and influence the tumor response to chemotherapy and tyrosine kinase inhibitors resulting in a poorer patient prognosis. Recent attempts using targeted therapies against KRAS alone have met with little success. The existence of specific subsets of lung cancer based on KRAS mutations and coexisting mutations are suggested. Their interactions need further elaboration before newer promising targeted therapies for KRAS mutant lung cancers can be used as earlier lines of therapy. We summarize the existing knowledge of KRAS mutations and their coexisting mutations that is relevant to lung cancer treatment, in this review. We elaborate on the prognostic impact of clinical and pathologic characteristics of lung cancer patients associated with KRAS mutations. We briefly review the currently available techniques for KRAS mutation detection on biopsy and cytology samples. Finally, we discuss the new therapeutic strategies for targeting KRAS-mutant non-small cell lung cancer (NSCLC). These may herald a new era in the treatment of KRAS G12C mutated NSCLC as well as be helpful to develop demographic subsets to predict targeted therapies and prognosis of lung cancer patients.
Targeted Therapy
Cite
Citations (5)
KRAS遺伝子変異は非小細胞肺癌を含むヒトの癌で頻度の高いがん遺伝子変異の一つである.発見から30年以上のKRAS変異陽性癌の治療法開発にもかかわらず,臨床的有用性を示す薬物は得られず,創薬不能な標的とされてきた.理由として,KRASとGTPの親和性は高く結合阻害は困難,KRASの下流シグナルや膜結合に必要な翻訳後修飾はいくつも平行しており,単一の経路や修飾反応の阻害では他の活性化が起こる,KRAS変異陽性癌は必ずしもKRASに生死が依存していないことなどが考えられる.2013年にGDP結合KRASに低分子化合物がはまるポケットが見出され,G12C変異KRASに限定的ながら,KRASを不活性なGDP結合型に非可逆的に固定する化合物が報告された.この発見に基づき,ソトラシブやアダグラシブなどのG12C特異的阻害剤が開発され,前者は2021年に米国で,2次治療以降のKRASG12C変異陽性非小細胞肺癌に対し迅速承認された.今後,G12C以外の直接阻害剤,G12C阻害剤との併用療法,耐性獲得後の対策,有効な患者選択のためのバイオマーカーなどについて,さらなる研究開発が待たれる.
Cite
Citations (0)
Liquid biopsy
Cite
Citations (7)
Lung cancer is the predominant cause of cancer-related deaths. The high mortality rates are mainly due to the lack of diagnosis before the cancer is at a late stage. Liquid biopsy is a promising technique that could allow early diagnosis of lung cancer and better treatment selection for patients. Cell-free microRNAs have been detected in biological fluids, such as serum and plasma, and are considered interesting biomarkers for lung cancer screening and detection. Exosomes are nanovesicles of 30–150 nm and can be released by different cell types within the tumor microenvironment. Their exosomal composition reflects that of their parental cells and could be potentially useful as a biomarker for lung cancer diagnosis. This review summarizes the state-of-the-art of circulating microRNAs (miRNAs) in lung cancer, focusing on their potential use in clinical practice. Moreover, we describe the importance of exosomal miRNA cargo in lung cancer detection and their potential role during lung carcinogenesis. Finally, we discuss our experience with the analysis of circulating exosomal miRNAs in the bioMILD screening trial.
Liquid biopsy
Cite
Citations (63)