CVnCoV and CV2CoV protect human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2
Donata HoffmannBjörn CorleisSusanne RauchNicole RothJanine MüheNico Joël HalweLorenz UlrichCharlie FrickeJacob SchönAnna KraftAngele BreithauptKerstin WernikeAnna MichelitschFranziska SickClaudia WylezichBernd HoffmannMoritz ThranAndreas TheßStefan O. MuellerThomas C. MettenleiterBenjamin PetschAnca DorhoiMartin Beer
54
Citation
35
Reference
10
Related Paper
Citation Trend
Abstract:
The ongoing SARS-CoV-2 pandemic necessitates the fast development of vaccines. Recently, viral mutants termed variants of concern (VOC) which may escape host immunity have emerged. The efficacy of spike encoding mRNA vaccines (CVnCoV and CV2CoV) against the ancestral strain and the VOC B.1.351 was tested in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with a formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice develop elevated SARS-CoV-2 RBD-specific antibody and neutralization titers which are readily detectable, but significantly reduced against VOC B.1.351. The mRNA vaccines fully protect from disease and mortality caused by either viral strain. SARS-CoV-2 remains undetected in swabs, lung, or brain in these groups. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV and CV2CoV show complete disease protection against the novel VOC B.1.351 in our studies.Keywords:
Strain (injury)
Pandemic
Mouse strain
Virus quantification
Plaque-forming unit
HSL and HSV
Cite
Citations (7)
Abstract While there are various attempts to administer COVID-19-convalescent plasmas to SARS-CoV-2-infected patients, neither appropriate approach nor clinical utility has been established. We examined the presence and temporal changes of the neutralizing activity of IgG fractions from 43 COVID-19-convalescent plasmas using cell-based assays with multiple endpoints. IgG fractions from 27 cases (62.8%) had significant neutralizing activity and moderately to potently inhibited SARS-CoV-2 infection in cell-based assays; however, no detectable neutralizing activity was found in 16 cases (37.2%). Approximately half of the patients (~ 41%), who had significant neutralizing activity, lost the neutralization activity within ~ 1 month. Despite the rapid decline of neutralizing activity in plasmas, good amounts of SARS-CoV-2-S1-binding antibodies were persistently seen. The longer exposure of COVID-19 patients to greater amounts of SARS-CoV-2 elicits potent immune response to SARS-CoV-2, producing greater neutralization activity and SARS-CoV-2-S1-binding antibody amounts. The dilution of highly-neutralizing plasmas with poorly-neutralizing plasmas relatively readily reduced neutralizing activity. The presence of good amounts of SARS-CoV-2-S1-binding antibodies does not serve as a surrogate ensuring the presence of good neutralizing activity. In selecting good COVID-19-convalescent plasmas, quantification of neutralizing activity in each plasma sample before collection and use is required.
Convalescent plasma
Cite
Citations (50)
Abstract We tested human sera from large, demographically balanced cohorts of BNT162b2 vaccine recipients (n=51) and COVID-19 patients (n=44) for neutralizing antibodies against SARS-CoV-2 variants B.1.1.7 and B.1.351. Although the effect is more pronounced in the vaccine cohort, both B.1.1.7 and B.1.351 show significantly reduced levels of neutralization by vaccinated and convalescent sera. Age is negatively correlated with neutralization in vaccinee, and levels of variant-specific RBD antibodies are proportional to neutralizing activities.
2019-20 coronavirus outbreak
Antibody response
Cite
Citations (21)
Methods of determining and expressing the neutralization titer of anti-interferon antibody were discussed based on considerations of the mass-action law and on experimental data of neutralization of L cell interferon by various antisera. The antibodies in all the sera so far examined were inferred to have low affinities (low association constants compared to the reciprocal of molar concentrations of free interferon), regardless of whether the serum had a low (a few hundred) or high (over 105) titer. Then the equilibrium equation can be approximated by a simple formula which relates the antibody concentration to the ratio of total to free interferon concentrations; the absolute amount of interferon neutralized (the difference between total and free interferons) is not involved in computing the titer, and therefore the problem of variations in interferon sensitivity in different assays is eliminated. It is proposed that the neutralization titer be defined, not as the antibody dilution that neutralizes a certain quantity of interferon (such as 10 international units, as often found in the literature), but as the dilution that reduces the interferon titer by a certain factor (taken to be 10 in this paper). A simple formula for calculating the titer from experimental data is given.
Antibody titer
Cite
Citations (87)
Infectivity
Antibody titer
Coxsackievirus
Cytopathic effect
Cite
Citations (15)
Studies of neutralizing antibodies in HIV-1 infected individuals provide insights into the quality of the response that should be possible to elicit with vaccines and ways to design effective immunogens. Some individuals make high titres of exceptional broadly reactive neutralizing antibodies that are of particular interest; however, more modest responses may be a reasonable goal for vaccines. We performed a large cross-sectional study to determine the spectrum of neutralization potency and breadth that is seen during chronic HIV-1 infection.Neutralization potency and breadth were assessed with genetically and geographically diverse panels of 205 chronic HIV-1 sera and 219 Env-pseudotyped viruses representing all major genetic subtypes of HIV-1.Neutralization was measured by using Tat-regulated luciferase reporter gene expression in TZM-bl cells. Serum-neutralizing activity was compared with a diverse set of human mAbs that are widely considered to be broadly neutralizing.We observed a uniform continuum of responses, with most sera displaying some level of cross-neutralization, and approximately 50% of sera neutralizing more than 50% of viruses. Titres of neutralization (potency) were highly correlated with breadth. Many sera had breadth comparable to several of the less potent broadly neutralizing human mAbs.These results help clarify the spectrum of serum-neutralizing activity induced by HIV-1 infection and that should be possible to elicit with vaccines. Importantly, most people appear capable of making low to moderate titres of broadly neutralizing antibodies. Additional studies of these relatively common responses might provide insights for practical and feasible vaccine designs.
Cite
Citations (342)
Cite
Citations (1)
Summary The 7 S and 19 S rabbit antibodies to herpes simplex virus (HSV) from early and late (hyperimmune) sera differed in their ability to sensitize virus for subsequent neutralization by either complement (C′) or anti-γ-globulin (GAR). The early 7 S and 19 S antibodies showed low to negligible neutralizing activity in the absence of C′ or GAR. When C′ was added, however, both of these antibodies showed enhanced neutralizing activity. The early 7 S but not the early 19 S antibody was also capable of sensitizing virus for subsequent neutralization by GAR. The late 19 S antibody could neutralize virus in the absence of C′ or GAR, but its activity was enhanced in the presence of C′ or GAR. The late 7 S antibody showed high neutralizing activity in the absence of C′ or GAR. In the presence of C′, the neutralization rate constants (K) but not the neutralization titers of the late 7 S antibody were enhanced. In contrast, the neutralization titers of the late 7 S antibody were enhanced approximately threefold with GAR. The neutralizing activity of the early and late 19 S antibodies with C′ or GAR was sensitive to inactivation by 2-ME. Similarly, the neutralizing activity with C′ of the early 7 S antibody and the enhanced rate of neutralization with C′ of the late 7 S antibody were sensitive to inactivation by 2-ME. In contrast, 2-ME did not reduce the neutralization titers of the early and late 7 S antibodies in the presence of GAR.
Cite
Citations (101)
Convalescent plasma
Cite
Citations (90)
Background: VRC01 is a human IgG1 broadly neutralizing antibody (bnAb) that binds to the HIV-1 envelope glycoprotein. It is being evaluated in two ongoing Phase 2b trials, the first efficacy assessment of a passively-administered bnAb for HIV-1 prevention. HVTN 104 was a phase 1 trial of VRC01. Setting: We measured serum concentrations and serum neutralization of VRC01 in 1079 longitudinal samples collected after passive administration of VRC01 in 84 HVTN 104 participants. As assays for measuring VRC01 serum neutralization titers are resource-intensive, we investigated approaches to predicting such titers. Methods: Serum concentration was measured using an anti-idiotypic ELISA assay. Serum neutralization ID50 titers and in vitro neutralization potency IC50 of the VRC01 clinical lot were measured against Env-pseudoviruses. Three approaches were used to predict serum neutralization ID50 titers based on (1) observed serum concentration divided by IC50, (2) pharmacokinetics model-predicted serum concentration divided by IC50, and (3) joint modeling of the longitudinal serum concentrations and ID50 titers. Results: All 3 approaches yielded satisfactory prediction of neutralization titers against viruses of varied sensitivities; the median fold differences (FDs) of observed-over-predicted ID50 titers were between 0.95 and 1.37. Approach 3 generally performed the best with fold differences between 0.95 and 0.99 and <82% mean squared prediction error relative to approach 1. Similar results were obtained for ID80 titers. Conclusion: VRC01 serum neutralization could be accurately predicted, especially when using pharmacokinetics models. The proposed prediction approaches could potentially save significant resources for the characterization of serum neutralization of VRC01, including for other bnAbs and bnAb combinations.
Volunteer
Cite
Citations (7)