logo
    Targeting immunometabolism of neoplasms by interleukins: A promising immunotherapeutic strategy for cancer treatment
    6
    Citation
    84
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Tumor progression
    Cancer Immunotherapy
    Cell metabolism
    The progression of cancer from localized to metastatic disease is the primary cause of morbidity and mortality. The interplay between the tumor and its microenvironment is the key driver in this process of tumor progression. In order for tumors to progress and metastasize they must reprogram the cells that make up the microenvironment to promote tumor growth and suppress endogenous defense systems, such as the immune and inflammatory response. We have previously demonstrated that stimulation of Tsp-1 in the tumor microenvironment (TME) potently inhibits tumor growth and progression. Here, we identify a novel tumor-mediated mechanism that represses the expression of Tsp-1 in the TME via secretion of the serine protease PRSS2. We demonstrate that PRSS2 represses Tsp-1, not via its enzymatic activity, but by binding to low-density lipoprotein receptor-related protein 1 (LRP1). These findings describe a hitherto undescribed activity for PRSS2 through binding to LRP1 and represent a potential therapeutic strategy to treat cancer by blocking the PRSS2-mediated repression of Tsp-1. Based on the ability of PRSS2 to reprogram the tumor microenvironment, this discovery could lead to the development of therapeutic agents that are indication agnostic.
    Tumor progression
    LRP1
    Citations (10)
    Stroma plays an important role during epithelial tumor progression. Probing stroma alteration may become an intrinsic indicator for evaluating epithelial tumor progression. In this review, we summarize our recent works on stromal alterations as quantitative optical biomarkers of epithelial tumor progression by use of nonlinear optical microscopy.
    Tumor progression
    Citations (2)
    Pancreatic ductal adenocarcinoma (PDAC) is considered as one of the most aggressive malignancies due to its unique microenvironment of which the cardinal histopathological feature is the remarkable desmoplasia of the stroma, taking up about 80% of the tumor mass. The desmoplastic stroma negatively affects drug diffusion and the infiltration of T cells, leading to an immunosuppressive microenvironment. However, this unique microenvironment can limit the physical spread of pancreatic cancer via a neighbor suppression effect. Here, a tumor central stroma targeting and microenvironment responsive strategy was applied to generate a nanoparticle coloading paclitaxel and phosphorylated gemcitabine. The designed nanoparticle disrupted the central stroma while preserving the external stroma, thereby promoting the antitumor effectiveness of chemotherapeutics. Additionally, the resulting nanoparticle can modulate the tumor immunosuppressive microenvironment by augmenting the number of cytotoxic T cells and restraining the percentage of T regulatory cells. The relatively intact external stroma can effectively maintain the neighbor suppression effect and prevent tumor metastasis. Combining stroma targeting with the delivery of stimuli-responsive polymeric nanoparticles embodies an effective tumor-tailored drug delivery system.
    Desmoplasia
    Abstract Although it is well recognized that the tumor microenvironment plays a key role in regulating tumor progression, the mechanisms through which this occurs need to be defined. Current international research activities toward defining the role of the tumor microenvironment in cancer progression were the subject of the first Tianjin Forum on Tumor Microenvironment held at Nankai University in Tianjin, China, July 2 to 4, 2010. The importance of variety of processes, such as inflammation and angiogenesis, in the role of tumor progression was described for multiple tumor types including breast, prostate, and hepatic cancers, as well as the process of bone metastasis. Identification of novel signaling pathways that impact both angiogenesis and bone remodeling were presented. Several themes emerged from this meeting, such as: (i) tumor cells modify the microenvironment to enhance their own survival and progression; (ii) targeting host factors, in addition to targeting tumor cells, will have important therapeutic effects; and (iii) host cells distribution within the tumor has both prognostic and therapeutic significance. Several priorities for future research were defined including use of a systems biology approach to define the role of host factors in tumor progression, to define the importance of targeting both arms of the bone remodeling process for therapy of bone metastasis, and to determine how different cell subsets contribute to microenvironment-mediated regulation of tumor progression. Cancer Res; 71(2); 310–3. ©2011 AACR.
    Nanoscience has long been lauded as a method through which tumor-associated barriers could be overcome. As successful as cancer immunotherapy has been, limitations associated with the tumor microenvironment or side effects of systemic treatment have become more apparent. In this Review, we seek to lay out the therapeutic challenges associated with the tumor microenvironment and the ways in which nanoscience is being applied to remodel the tumor microenvironment and increase the susceptibility of many cancer types to immunotherapy. We detail the nanomedicines on the cutting edge of cancer immunotherapy and how their interactions with the tumor microenvironment make them more effective than systemically administered immunotherapies.
    Cancer Immunotherapy
    Citations (206)
    This review systematically examines the multifaceted relationship between the tumor microenvironment, stromal interactions, and colorectal cancer (CRC) progression and metastasis. The analysis begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. In summary, this review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
    Tumor progression
    Tumor budding