Stabilization of a nonlinear bullet coexisting with a Bose-Einstein condensate in a rapidly cooled magnonic system driven by a spin-orbit torque
Michael SchneiderDavid BreitbachRostyslav O. SerhaQi WangMorteza MohseniA. A. SergaA. N. SlavinV. S. TiberkevichBjörn HeinzT. BrächerB. LägelCarsten DubsSebastian KnauerOleksandr V. DobrovolskiyPhilipp PirroB. HillebrandsAndrii V. Chumak
0
Citation
0
Reference
20
Related Paper
Abstract:
We have recently shown that injection of magnons into a magnetic dielectric via the spin-orbit torque (SOT) effect in the adjacent layer of a heavy metal subjected to the action of short (0.1 $\mu$s) current pulses allows for control of a magnon Bose-Einstein Condensate (BEC). Here, the BEC was formed in the process of rapid cooling (RC), when the electric current heating the sample is abruptly terminated. In the present study, we show that the application of a longer (1.0 $\mu$s) electric current pulse triggers the formation of a nonlinear localized magnonic bullet below the linear magnon spectrum. After pulse termination, the magnon BEC, as before, is formed at the bottom of the linear spectrum, but the nonlinear bullet continues to exist, stabilized for additional 30 ns by the same process of RC-induced magnon condensation. Our results suggest that a stimulated condensation of excess magnons to all highly populated magnonic states occurs.Keywords:
Magnon
Cite
In this paper, we investigate the effect of atomic collisions on the phase transition form the normal to the superradiant phase in a one-dimensional Bose–Einstein condensate (BEC) trapped inside an optical cavity. Specifically, we show that driving the atoms from the side of the cavity leads to the excitation of modes in the edges of the first Brillouin zone of every energy band, which results in the two-mode approximation of the BEC matter field in the limit of weak coupling regime. The nonlinear effect of atom–atom interaction shifts the threshold of the quantum phase transition of the BEC and also affect the power low behavior of quantum fluctuations in the total particle number. Besides, we show the possibility of controlling the quantum phase transition of the system through the s-wave scattering frequency when the strength of the transverse pumping has been fixed.
Quantum phases
Cite
Citations (17)
The term supercurrent relates to a macroscopic dissipation-free collective motion of a quantum condensate and is commonly associated with such famous low-temperature phenomena as superconductivity and superfluidity. Another type of motion of quantum condensates is second sound - a wave of the density of a condensate. Recently, we reported on an enhanced decay of a parametrically induced Bose-Einstein condensate (BEC) of magnons caused by a supercurrent outflow of the BEC phase from the locally heated area of a room temperature magnetic film. Here, we present the direct experimental observation of a long-distance spin transport in such a system. The condensed magnons being pushed out from the potential well within the heated area form a density wave, which propagates through the BEC many hundreds of micrometers in the form of a specific second sound pulse - Bogoliubov waves - and is reflected from the sample edge. The discovery of the long distance supercurrent transport in the magnon BEC further advances the frontier of the physics of quasiparticles and allows for the application of related transport phenomena for low-loss data transfer in perspective magnon spintronics devices.
Magnon
Supercurrent
Cite
Citations (23)
Long-lived coherent spin precession of 3He-B at low temperatures around 0.2 Tc is a manifestation of Bose-Einstein condensation of spin-wave excitations or magnons in a magnetic trap which is formed by the order-parameter texture and can be manipulated experimentally. When the number of magnons increases, the orbital texture reorients under the influence of the spin-orbit interaction and the profile of the trap gradually changes from harmonic to a square well, with walls almost impenetrable to magnons. This is the first experimental example of Bose condensation in a box. By selective rf pumping the trap can be populated with a ground-state condensate or one at any of the excited energy levels. In the latter case the ground state is simultaneously populated by relaxation from the exited level, forming a system of two coexisting condensates.
Magnon
Magnetic trap
Harmonic
Cite
Citations (47)
Long-lived coherent spin precession of 3He-B at low temperatures around 0.2 Tc is a manifestation of Bose-Einstein condensation of spin-wave excitations or magnons in a magnetic trap which is formed by the order-parameter texture and can be manipulated experimentally. When the number of magnons increases, the orbital texture reorients under the influence of the spin-orbit interaction and the profile of the trap gradually changes from harmonic to a square well, with walls almost impenetrable to magnons. This is the first experimental example of Bose condensation in a box. By selective rf pumping the trap can be populated with a ground-state condensate or one at any of the excited energy levels. In the latter case the ground state is simultaneously populated by relaxation from the exited level, forming a system of two coexisting condensates.
Magnon
Magnetic trap
Cite
Citations (0)
Optical lattice
Lattice (music)
Cite
Citations (13)
We have recently shown that injection of magnons into a magnetic dielectric via the spin-orbit torque (SOT) effect in the adjacent layer of a heavy metal subjected to the action of short (0.1 $\mu$s) current pulses allows for control of a magnon Bose-Einstein Condensate (BEC). Here, the BEC was formed in the process of rapid cooling (RC), when the electric current heating the sample is abruptly terminated. In the present study, we show that the application of a longer (1.0 $\mu$s) electric current pulse triggers the formation of a nonlinear localized magnonic bullet below the linear magnon spectrum. After pulse termination, the magnon BEC, as before, is formed at the bottom of the linear spectrum, but the nonlinear bullet continues to exist, stabilized for additional 30 ns by the same process of RC-induced magnon condensation. Our results suggest that a stimulated condensation of excess magnons to all highly populated magnonic states occurs.
Magnon
Cite
Citations (7)
A quantised spin wave – magnon – in magnetic films can undergo Bose-Einstein condensation (BEC) into two energetically degenerate lowest-energy quantum states with nonzero wave vectors ±kBEC. This corresponds to two interfering condensates forming spontaneously in momentum space. Brillouin Light Scattering studies for a microwavepumped film with submicrometer spatial resolution experimentally confirm the existence of the two wavefunctions and show that their interference results in a nonuniform ground state of the condensate with the density oscillating in space. Moreover, fork dislocations in the density fringes provide direct experimental evidence for the formation of pinned half-quantum vortices in the magnon condensate. The measured amplitude of the density oscillation implies the formation of a nonsymmetric state that corresponds to nonequal occupation of two energy minima. We discuss the experimental findings and consider the theory of magnon condensates, which includes, to leading order, the contribution from the noncondensed magnons. The effect of the noncondensed magnon cloud is to increase the contrast of the asymmetric state and to bring about the experimental measurements.
Magnon
Brillouin zone
Microscopic theory
Spin wave
Cite
Citations (1)
Magnon Bose-Einstein Condensates (BECs) and supercurrents are coherent quantum phenomena, which appear on a macroscopic scale in parametrically populated solid state spinsystems. One of the most fascinating and attractive features of these processes is the possibility of magnon condensation and supercurrent excitation even at room temperature. At the same time, valuable information about a magnon BEC state, such as its lifetime, its formation threshold, and coherency, is provided by experiments at various temperatures. Here, we use Brillouin Light Scattering (BLS) spectroscopy for the investigation of the magnon BEC dynamics in a single-crystal film of yttrium iron garnet in a wide temperature range from 30 K to 380 K. By comparing the BLS results with previous microwave measurements, we re-vealed the direct relation between the damping of the condensed and the parametrically injected magnons. The enhanced supercurrent dynamics was detected at 180 K near the minimum of BEC damping.
Magnon
Brillouin zone
Yttrium Iron Garnet
Cite
Citations (6)
Long-range interactions and roton minimum softening in a spin-orbit coupled Bose-Einstein condensate
We measure the collective excitation spectrum of a spin-orbit coupled Bose-Einstein condensate using Bragg spectroscopy. The spin-orbit coupling is generated by Raman dressing of atomic hyperfine states. When the Raman detuning is reduced, mode softening at a finite momentum is revealed, which provides insight towards a supersolid-like phase transition. We find that for the parameters of our system, this softening stops at a finite excitation gap and is symmetric under a sign change of the Raman detuning. Finally, using a moving barrier that is swept through the BEC, we also show the effect of the collective excitation on the fluid dynamics.
Roton
Oscillation (cell signaling)
Supersolid
Cite
Citations (4)
Collective excitations of a dilute Bose condensate have been observed. These excitations are analogous to phonons in superfluid helium. Bose condensates were created by evaporatively cooling magnetically trapped sodium atoms. Excitations were induced by a modulation of the trapping potential, and detected as shape oscillations in the freely expanding condensates. The frequencies of the lowest modes agreed well with theoretical predictions based on mean-field theory. Before the onset of Bose-Einstein condensation, we observed sound waves in a dense ultracold gas.
Magnetic trap
Trap (plumbing)
Second sound
Roton
Cite
Citations (576)