logo
    An emerging role of Prevotella histicola on estrogen deficiency–induced bone loss through the gut microbiota–bone axis in postmenopausal women and in ovariectomized mice
    57
    Citation
    38
    Reference
    10
    Related Paper
    Citation Trend
    Abstract Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca 2+ /NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr . Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis.
    Bone remodeling
    Citations (45)
    Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN-/- osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the alpha(v)beta(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling.
    Osteopontin
    Bone remodeling
    Citations (233)
    Abstract Several reports indicate that macrophage colony stimulating factor (MCSF) is one of the major factors required for osteoclast proliferation and differentiation. Paradoxically, it has also been reported that MCSF inhibits osteoclastic activity. We therefore decided to investigate in detail the effects of MCSF on resorption and osteoclast formation to try and clarify this issue. Osteoclast-containing cultures were obtained from rabbit long bones and cultured on plastic culture dishes or devitalized bovine bone slices. MCSF (4–400 ng/ml) stimulated osteoclastic bone resorption in a time-dependent manner and at all doses examined. After 48 h of culture in the presence of MCSF, we observed a 2-fold increase in the total area of bone resorbed, as well as a significant increase in the area of bone resorbed per osteoclast and the number of resorption pits per osteoclast. This effect was paralleled by an increase in the number of larger osteoclasts (as determined by the number of nuclei per cell) and an increase in the size and depth of the resorption pits. Since the total number of osteoclasts remained the same, the MCSF-induced increase in resorptive activity appeared to be related to an increase in the average size of the osteoclasts. When resorption was expressed as the amount of bone resorbed per osteoclast nucleus, larger osteoclasts resorbed more per nucleus, suggesting that large osteoclasts, as a population, are more effective resorbers than small osteoclasts. Interestingly, when osteoclasts were plated at one-fifth the standard density, the amount of bone resorbed per osteoclast decreased considerably, indicating that resorptive activity is also affected by cell density of osteoclasts and/or of other cells present. However, at this lower density MCSF still increased osteoclast size and resorption by the same fold increase over control, suggesting that the effect of MCSF was independent of factors related to cell density.
    Citations (85)
    Objective This study investigated the effects of Hansu-Daebowon (HDW) on bone resorption in vitro and bone loss in vivo. Methods Osteoclast differentiation was measured by counting TRAP (+) MNC formed from RAW 264.7 in the presence of RANKL. Bone pit formation was determined in an artificial bone slice loaded with RANKL-stimulated osteoclasts. To elucidate the mechanisms of the inhibitory effects of HDW on bone resorption and osteoclast differentiation, osteoclastogenic genes (i.e. TRAP, MMP-9, NFATc1, c-Fos, and Cathepsin K) were measured using real time PCR. Furthermore, bone loss was observed using micro-CT in an LPS-treated mammal model. Results HDW inhibited the bone pit formation in vitro and inhibited bone loss in vivo. Moreover, HDW decreased the number of TRAP (+) MNCs in the presence of RANKL, and HDW inhibited the expressions of cathepsin K, MMP-9, TRAP, NFATc1, and c-Fos in the osteoclasts. Conclusion HDW exerts inhibitory effects on bone loss and bone resorption resulting from the inhibitions of osteoclast differentiation and osteoclastogenic gene expression. Keywords: Hansu-Daebowon (HDW), osteoclast differentiation, TRAP, cathepsin K, NFATc1, bone loss, bone resorption
    Cathepsin K