Kanglexin delays heart aging by promoting mitophagy
Huimin LiXin LiuZiyu MengLei WangLimin ZhaoHui ChenZhixia WangHao CuiXueqing TangXiaohan LiWeina HanXue BaiYuan LinHeng LiuYong ZhangBaofeng Yang
27
Citation
63
Reference
10
Related Paper
Citation Trend
PINK1
Cite
Citations (195)
Much evidence links mitochondrial dysfunction to the death of neurons in Parkinson disease (PD), and is particularly emphasized by our growing understanding of the function of genes linked to recessively inherited PD such as PINK1, parkin and DJ-1. Recent work has revealed an exciting link between the PINK1-Parkin pathway and the autophagic turnover of dysfunctional mitochondrial (mitophagy). We have recently shown that mitofusin is ubiquitinated by Parkin when it is recruited to dysfunctional mitochondria. Recent work also shows that regulated fission and fusion events help segregate dysfunctional mitochondria prior to mitophagy. Here we hypothesize how Parkin-mediated ubiquitination of Mfn may play a role in this mechanism.
PINK1
Cite
Citations (60)
Abstract Background We have reported that polydatin (PD) alleviates mitochondrial dysfunction in rat models of sepsis-induced acute kidney injury (SI-AKI), but the mechanism is not well understood. Here, we investigated the role of Parkin-mediated mitophagy in the protective effects of PD in SI-AKI in mice. Methods Sepsis was induced in the mice by caecal ligation and puncture. Mitophagy was determined by mitochondrial mass. NLRP3 inflammasome activation was determined by NLRP3, ASC and caspase-1. Mitophagy was blocked by treatment with mitochondrial division inhibitor-1 and Parkin knockout. Key results PD treatment increased the sepsis-induced loss of mitochondrial mass, indicating the upregulation of mitophagy. Furthermore, PD treatment mediated Parkin translocation from the cytoplasm to the mitochondria. This suggests that Parkin-mediated mitophagy is an underlying mechanism. This was confirmed by the suppression of PD-induced mitophagy in Parkin−/− mice and in mice that were treated with a mitophagy inhibitor. PD-induced Parkin translocation and mitophagy were blocked by inhibiting SIRT1; thus, activation of SIRT1 might be an important molecular mechanism that is triggered by PD. Additionally, PD treatment protected against sepsis-induced kidney injury. These effects were blocked by inhibition of Parkin-dependent mitophagy. Furthermore, PD also protected against mitochondrial dysfunction and mitochondria-dependent apoptosis, and the effect was blocked when Parkin-dependent mitophagy was inhibited. Finally, PD suppressed NLRP3 inflammasome activation that was also dependent on Parkin-mediated mitophagy. Conclusions These findings indicate that Parkin-mediated mitophagy is important for the protective effect of PD in SI-AKI, and the underlying mechanisms include the inhibition of mitochondrial dysfunction and NLRP3 inflammasome activation.
Cite
Citations (66)
Dysfunctional mitochondria may produce excessive reactive oxygen species, thus inducing DNA damage, which may be oncogenic if not repaired. As a major role of the PINK1-Parkin pathway involves selective autophagic clearance of damaged mitochondria via a process termed mitophagy, Parkin-mediated mitophagy may be a tumor-suppressive mechanism. As an alternative mechanism for tumor inhibition beyond mitophagy, Parkin has been reported to have other oncosuppressive functions such as DNA repair, negative regulation of cell proliferation and stimulation of p53 tumor suppressor function. The authors recently reported that acute ethanol-induced mitophagy in hepatocytes was associated with Parkin mitochondrial translocation and colocalization with accumulated 8-OHdG (a marker of DNA damage and mutagenicity). This finding suggests: (1) the possibility of Parkin-mediated repair of damaged mitochondrial DNA in hepatocytes of ethanol-treated rats (ETRs) as an oncosuppressive mechanism; and (2) potential induction of cytoprotective mitophagy in ETR hepatocytes if mitochondrial damage is too severe to be repaired. Below is a summary of the various roles Parkin plays in tumor suppression, which may or may not be related to mitophagy. A proper understanding of the various tasks performed by Parkin in tumorigenesis may help in cancer therapy by allowing the PINK1-Parkin pathway to be targeted.
PINK1
Cite
Citations (6)
PINK1
Cite
Citations (483)
PINK1
Cite
Citations (35)
PINK1
Cite
Citations (561)
PINK1
Cite
Citations (244)
FKBP
Cite
Citations (25)
Mutations in the genes for PINK1 and parkin cause Parkinson’s disease. PINK1 and parkin cooperate in the selective autophagic degradation of damaged mitochondria (mitophagy) in cultured cells. However, evidence for their role in mitophagy in vivo is still scarce. Here, we generated a Drosophila model expressing the mitophagy probe mt-Keima. Using live mt-Keima imaging and correlative light and electron microscopy (CLEM), we show that mitophagy occurs in muscle cells and dopaminergic neurons in vivo, even in the absence of exogenous mitochondrial toxins. Mitophagy increases with aging, and this age-dependent rise is abrogated by PINK1 or parkin deficiency. Knockdown of the Drosophila homologues of the deubiquitinases USP15 and, to a lesser extent, USP30, rescues mitophagy in the parkin-deficient flies. These data demonstrate a crucial role for parkin and PINK1 in age-dependent mitophagy in Drosophila in vivo.
PINK1
Cite
Citations (200)