logo
    Buckling and Free Vibrations of a Magneto-Electro-Elastic Sandwich Panel with Flexible Core
    0
    Citation
    0
    Reference
    20
    Related Paper
    Abstract:
    This paper presents the buckling and out-of-plane free vibration response of a sandwich panel with flexible core for the different boundary condition. In the desired configuration of the sandwich panel, the top and bottom plates are made of magneto-electro-elastic (MEE) plates. Moreover, the in-plane electric and magnetic potential fields are neglected for the derivation of the required relations. The sandwich structure is subjected to axial force in both longitudinal and transverse directions; in addition, and the top and bottom plates are exposed to electric and magnetic fields. The governing equations of motion for MEE sandwich panel with a flexible core are derived based on the first-order shear deformation theory by neglecting the displacement of the mid-plate and using the Hamilton’s principle. Furthermore, the derived partial differential equations (PDEs) are solved. According to the obtained numerical results, the core thickness, variation of electric field, variation of magnetic field and plate length are introduced as the most influential parameters on the free vibration response of the panel as well as the critical force of buckling.  As one of the results, the electric potential is inversely related to the natural frequency and buckling load, so that with increasing the electric potential, the natural frequency and critical load of the structure is also increased.Moreover, the magnetic potential is directly related to the natural frequency and buckling load of the system, and increasing trends of natural frequency and critical load are observed by increasing the magnetic potential.
    Keywords:
    Natural frequency
    An analytical method is presented in this work for the linear vibrations and buckling of nano-plates in a hygro-thermal environment. Nonlinear von Kármán terms are included in the plate kinematics in order to consider the instability phenomena. Strain gradient nonlocal theory is considered for its simplicity and applicability with respect to other nonlocal formulations which require more parameters in their analysis. Present nano-plates have a coupled magneto-electro-elastic constitutive equation in a hygro-thermal environment. Nano-scale effects on the vibrations and buckling behavior of magneto-electro-elastic plates is presented and hygro-thermal load outcomes are considered as well. In addition, critical temperatures for vibrations and buckling problems are analyzed and given for several nano-plate configurations.
    Magneto
    Temperature Gradient
    Citations (52)
    This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.
    Displacement field
    Plate theory
    In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier\'s approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.
    Plate theory
    Föppl–von Kármán equations
    Foundation (evidence)
    Bending of plates
    Citations (10)
    Based on the third-order shear deformation theory (TSDT), this paper numerically investigates the natural frequencies and time response of three-layered annular plate with functionally graded materials (FGMs) sheet core and piezoelectric face sheets, under initial external electric voltage. The impressive material specifications of FGM core are assumed to vary continuously across the plate thickness utilizing a power law distribution. The equilibrium equations are obtained employing Hamilton’s method and then solved applying differential quadrature method (DQM) in conjunction with Newmark-β. Numerical studies are carried out to express the influences of the external electric voltage, aspect ratio, and material gradient on the variations of the natural frequencies and time response curves of FGM piezoelectric sandwich annular plate. It is precisely shown that these parameters have considerable effects on the free vibration and transient response.
    Plate theory
    Natural frequency
    Quadrature (astronomy)
    Functionally graded material
    The paper deals with the investigation of linear buckling and free vibration behavior of layered and multiphase magneto‐electro‐elastic (MEE) beam under thermal environment. The constitutive equations of magneto‐electro‐elastic materials are used to derive finite element equations involving the coupling between mechanical, electrical and magnetic fields. The finite element model has been verified with the commercial finite element package ANSYS. The influence of magneto electric coupling on critical buckling temperature is investigated between layered and multiphase magneto‐electro‐elastic beam. Furthermore, the influence of temperature rise on natural frequencies of magneto‐electro‐elastic beam with layered and different volume fraction is presented.
    Magneto
    Volume fraction
    Citations (45)
    The constitutive equations of MEE materials are used to derive the finite element equations involving the coupling between mechanical, electrical and magnetic fields. The candidate materials for this study are piezoelectric (BaTiO 3 ) and magnetostrictive (CoFe 2 O 4 ) material. The linear buckling and vibration behavior of layered MEE beam under uniform magnetic field is carried out using finite element method. The present study is limited to clamped-clamped boundary conditions. The influence of stacking sequences and piezoelectric coupling on critical buckling magnetic field and vibration behaviour is investigated.
    This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material properties of FG skins are varied through the thickness according to the power law distribution. The present theory accounts for a hyperbolic distribution of axial displacement whereas transverse displacement is constant through the thickness i.e effects of thickness stretching are neglected. The present theory gives hyperbolic cosine distribution of transverse shear stress through the thickness of the beam and satisfies zero traction boundary conditions on the top and bottom surfaces of the beam. The equations of the motion are obtained by using the Hamilton’s principle. Closed-form solutions for static, buckling and vibration analysis of simply supported FG sandwich beams are obtained using Navier’s solution technique. The non-dimensional numerical results are obtained for various power law index and skin-core-skin thickness ratios. The present results are compared with previously published results and found in excellent agreement.
    Timoshenko beam theory
    Citations (15)