logo
    Identification and Regulation of Tomato Serine/Arginine-Rich Proteins Under High Temperatures
    20
    Citation
    67
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Alternative splicing is an important mechanism for the regulation of gene expression in eukaryotes during development, cell differentiation or stress response. Alterations in the splicing profiles of genes under high temperatures that cause heat stress (HS) can impact the maintenance of cellular homeostasis and thermotolerance. Consequently, information on factors involved in HS-sensitive alternative splicing is required to formulate the principles of HS response. Serine/arginine-rich (SR) proteins have a central role in alternative splicing. We aimed for the identification and characterization of SR-coding genes in tomato ( Solanum lycopersicum ), a plant extensively used in HS studies. We identified 17 canonical SR and two SR-like genes. Several SR-coding genes show differential expression and altered splicing profiles in different organs as well as in response to HS. The transcriptional induction of five SR and one SR-like genes is partially dependent on the master regulator of HS response, HS transcription factor HsfA1a. Cis -elements in the promoters of these SR genes were predicted, which can be putatively recognized by HS-induced transcription factors. Further, transiently expressed SRs show reduced or steady-state protein levels in response to HS. Thus, the levels of SRs under HS are regulated by changes in transcription, alternative splicing and protein stability. We propose that the accumulation or reduction of SRs under HS can impact temperature-sensitive alternative splicing.
    Keywords:
    SR protein
    Splicing factor
    The SR family of proteins plays important regulatory roles in the control of alternative splicing in a wide range of organisms. These factors affect splicing through both positive and negative controls of splice site recognition by pre-spliceosomal factors. Recent studies indicate that the Drosophila SR factor Transformer 2 (Tra2) activates and represses splicing through distinct and separable effector regions of the protein. While the interactions of its Arg-Ser-rich activator region have been well studied, cofactors involved in splicing repression have yet to be found. Here we use a luciferase-based splicing reporter assay to screen for novel proteins necessary for Tra2-dependent repression of splicing. This approach identified Half pint, also known as Puf68, as a co-repressor required for Tra2-mediated autoregulation of the M1 intron. In vivo, Half pint is required for Tra2-dependent repression of M1 splicing but is not necessary for Tra2-dependent activation of doublesex splicing. Further experiments indicate that the effect of Hfp is sequence-specific and that it associates with these target transcripts in cells. Importantly, known M1 splicing regulatory elements are sufficient to sensitize a heterologous intron to Hfp regulation. Two alternative proteins deriving from Hfp transcripts, Hfp68, and Hfp58, were found to be expressed in vivo but differed dramatically in their effect on M1 splicing. Comparison of the cellular localization of these forms in S2 cells revealed that Hfp68 is predominantly localized to the nucleus while Hfp58 is distributed across both the nucleus and cytoplasm. This accords with their observed effects on splicing and suggests that differential compartmentalization may contribute to the specificity of these isoforms. Together, these studies reveal a function for Half pint in splicing repression and demonstrate it to be specifically required for Tra2-dependent intron inclusion.
    Doublesex
    Minigene
    Splicing factor
    SR protein
    Exonic splicing enhancer
    Protein splicing
    Spliceosome
    Citations (7)
    SR proteins are essential pre-mRNA splicing factors that act at the earliest stages of splice-site recognition and spliceosome assembly, as well as later in the splicing pathway. SR proteins consist of one or two RNA-recognition motifs and a characteristic arginine/serine-rich C-terminal RS domain. The RS domain, which is extensively phosphorylated, mediates the subcellular localization of individual SR proteins and also functions as a splicing activation module, apparently by engaging in protein-protein interactions. The RS domain of SF2/ASF is dispensable for the concentration-dependent effects of this SR protein on alternative splice-site selection. However, this RS domain is highly conserved phylogenetically, and was shown to be required for constitutive splicing in vitro and for cell viability. Here, we demonstrate that the RS domain of SF2/ASF is, in fact, dispensable for splicing of several substrates, including constitutive and enhancer-dependent pre-mRNAs. The requirement for this RS domain is substrate specific, and correlates with the strength of the splicing signals. When the 3' splice site is weak, both the SF2/ASF RS domain and U2AF(35) are required for splicing. These results show the existence of an RS domain-independent function of SR proteins in constitutive and enhancer-dependent splicing, and suggest mechanisms for their role in enhancer function besides U2AF recruitment.
    SR protein
    Exonic splicing enhancer
    Splicing factor
    Protein splicing
    Spliceosome
    Polypyrimidine tract
    Citations (177)
    The SR proteins constitute a family of splicing factors, highly conserved in metazoans, that contain one or two amino-terminal RNA-binding domains (RBDs) and a region enriched in arginine/serine repeats (RS domain) at the carboxyl terminus. Previous studies have shown that SR proteins possess distinct RNA-binding specificities that likely contribute to their unique functions, but it is unclear whether RS domains have specific roles in vivo. Here, we used a genetic system developed in the chicken B cell line DT40 to address this question. Expression of chimeric proteins generated by fusion of the RS domains of heterologous SR proteins, or a human TRA-2 protein, with the RBDs of ASF/SF2 allowed cell growth following genetic inactivation of endogenous ASF/SF2, indicating that RS domains are interchangeable for all functions required to maintain cell viability. However, a chimera containing the RS domain from a related splicing factor, U2AF 65 , could not rescue viability and was inactive in in vitro splicing assays, suggesting that this domain performs a distinct function. We also used the DT40 system to show that depletion of ASF/SF2 affects splicing of specific transcripts in vivo. Although splicing of several simple constitutive introns was not significantly affected, the alternative splicing patterns of two model pre-mRNAs switched in a manner consistent with predictions from previous studies. Unexpectedly, ASF/SF2 depletion resulted in a substantial increase in splicing of an HIV-1 tat pre-mRNA substrate, indicating that ASF/SF2 can repress tat splicing in vivo. These results provide the first demonstration that an SR protein can influence splicing of specific pre-mRNAs in vivo.
    SR protein
    Protein splicing
    Splicing factor
    Exonic splicing enhancer
    Minigene
    Heterogeneous ribonucleoprotein particle
    Citations (100)
    Abstract Alternative splicing has been shown to causally contribute to the epithelial–mesenchymal transition (EMT) and tumor metastasis. However, the scope of splicing factors that govern alternative splicing in these processes remains largely unexplored. Here we report the identification of A-Kinase Anchor Protein (AKAP8) as a splicing regulatory factor that impedes EMT and breast cancer metastasis. AKAP8 not only is capable of inhibiting splicing activity of the EMT-promoting splicing regulator hnRNPM through protein–protein interaction, it also directly binds to RNA and alters splicing outcomes. Genome-wide analysis shows that AKAP8 promotes an epithelial cell state splicing program. Experimental manipulation of an AKAP8 splicing target CLSTN1 revealed that splice isoform switching of CLSTN1 is crucial for EMT. Moreover, AKAP8 expression and the alternative splicing of CLSTN1 predict breast cancer patient survival. Together, our work demonstrates the essentiality of RNA metabolism that impinges on metastatic breast cancer.
    Splicing factor
    SR protein
    Exonic splicing enhancer
    Heterogeneous ribonucleoprotein particle
    Citations (94)
    Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.
    SR protein
    Splicing factor
    Protein splicing
    Exonic splicing enhancer
    Citations (2)
    Q Sun, A Mayeda, R K Hampson, A R Krainer, and F M Rottman Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960.
    Splicing factor
    Exonic splicing enhancer
    Minigene
    SR protein
    Protein splicing
    Precursor mRNA
    Citations (286)
    The human splicing factor 2, also called human alternative splicing factor (hASF), is the prototype of the highly conserved SR protein family involved in constitutive and regulated splicing of metazoan mRNA precursors. Here we report that the Drosophila homologue of hASF (dASF) lacks eight repeating arginine-serine dipeptides at its carboxyl-terminal region (RS domain), previously shown to be important for both localization and splicing activity of hASF. While this difference has no effect on dASF localization, it impedes its capacity to shuttle between the nucleus and cytoplasm and abolishes its phosphorylation by SR protein kinase 1 (SRPK1). dASF also has an altered splicing activity. While being competent for the regulation of 5' alternative splice site choice and activation of specific splicing enhancers, dASF fails to complement S100-cytoplasmic splicing-deficient extracts. Moreover, targeted overexpression of dASF in transgenic flies leads to higher deleterious developmental defects than hASF overexpression, supporting the notion that the distinctive structural features at the RS domain between the two proteins are likely to be functionally relevant in vivo.
    SR protein
    Splicing factor
    Minigene
    Exonic splicing enhancer
    Protein splicing
    Many splicing factors in vertebrate nuclei belong to a class of evolutionarily conserved proteins containing arginine/serine (RS) or serine/arginine (SR) domains. Previously, we demonstrated the existence of SR splicing factors in plants. In this article, we report on a novel member of this splicing factor family from Arabidopsis designated atRSp31. It has one N-terminal RNA recognition motif and a C-terminal RS domain highly enriched in arginines. The RNA recognition motif shows significant homology to all animal SR proteins identified to date, but the intermediate region does not show any homology to any other known protein. Subsequently, we characterized two cDNAs from Arabidopsis that are highly homologous to atRSp31 (designated atRSp35 and atRSp41). Their deduced amino acid sequences indicate that these proteins constitute a new family of RS domain splicing factors. Purified recombinant atRSp31 is able to restore splicing in SR protein-deficient human S100 extracts. This indicates that atRSp31 is a true plant splicing factor and plays a crucial role in splicing, similar to that of other RS splicing factors. All of the three genes are differentially expressed in a tissue-specific manner. The isolation of this new plant splicing factor family enlarges the essential group of RS domain splicing factors. Furthermore, because no animal equivalent to this protein family has been identified to date, our results suggest that these proteins play key roles in constitutive and alternative splicing in plants.
    Splicing factor
    SR protein
    RNA recognition motif
    Exonic splicing enhancer
    Homology
    Protein splicing
    Citations (81)