Polymer Based Triboelectric Nanogenerator for Cost‐Effective Green Energy Generation and Implementation of Surface‐Charge Engineering
Diana María LópezAminur Rashid ChowdhuryAbu Musa AbdullahMuhtasim Ul Karim SadafIsaac MartínezBrishty Deb ChoudhurySerena DantiChristopher J. EllisonKaren LozanoM. Jasim Uddin
11
Citation
39
Reference
10
Related Paper
Citation Trend
Abstract:
Performance of triboelectric nanogenerators for harvesting mechanical energy from the ambient environment has been limited by structural complexity, cost‐effectiveness, and mechanical weakness of materials. Herein, a cost‐effective vertical contact separation mode triboelectric nanogenerator using polyethylene (PE) and polycarbonate (PC) in a regular digital versatile disc is reported. This cost‐effective nanogenerator with simplified structures is able to generate an open‐circuit voltage of 215.3 V and short‐circuit current of 80 μA. The effects of the distance of impact and the air gap between the triboelectric layers have also been tested from 3 to 9 cm, and 0.25 to 1 cm, respectively. It is determined that 0.5 cm is the optimal air gap. The nanogenerator is also tested in different real‐life scenarios including stresses produced by a moving car, walking, and a rolling skateboard over the nanogenerator. The surfaces of the triboelectric layers are further modified by surface‐charge engineering which induced a 460% increase in the output power. These tests reveal a significant electrical response and mechanical stability under stress. In summary, this study demonstrates that the relatively inexpensive PE and PC triboelectric pair has the potential to be used for highly efficient, mechanically robust triboelectric nanogenerators.Keywords:
Nanogenerator
Mechanical energy
Electrostatic induction
Nanogenerator
Mechanical energy
Electric potential energy
Electrostatic induction
Cite
Citations (64)
Triboelectric nanogenerators (TENGs) are attracting more and more attention since they can convert various mechanical energies into electric energy. However, in traditional TENGs for harvesting rotation energy, most of the contacts between two triboelectric materials are rigid-to-rigid contact with very large friction force, which limits their practical application. Here, we report an ultra-low-friction triboelectric–electromagnetic hybrid nanogenerator (NG). A freestanding mode TENG and a rotating electromagnetic generator (EMG) are integrated together to realize the complementary individual merits. The very soft and elastic contact between the two triboelectric materials in the TENG results into very small friction force. The influences of the type and the dimensions of the dielectric material on the performance of the TENG are studied systematically from theory to experiments. The results indicate that the open-circuit voltage and the transfer charge of the TENG increase with the rotation speed, which is very different from a traditional rotary TENG and is due to the increase of the contact area. The optimized TENG has a maximal load voltage of 65 V and maximal load power per unit mass of 438.9 mW/kg under a speed rotation of 1000 rpm, while the EMG has a maximal load voltage of 7 V and maximal load power density of 181 mW/kg. This demonstration shows that the hybrid NG can power a humidity/temperature sensor by converting wind energy into electric energy when the wind speed is 5.7 m/s. Meanwhile, it can be used as a self-powered wind speed sensor to detect wind speed as low as 3.5 m/s.
Nanogenerator
Mechanical energy
Cite
Citations (326)
Triboelectric nanogeneration is a burgeoning and promising technology for harvesting low-frequency mechanical energy from the environment, but the energy conversion efficiency and service life of the triboelectric nanogenerator (TENG) device are limited by the inevitable frictional resistance between the tribo-surfaces. Herein, we propose an electrostatic induction nanogenerator (EING) circulation network (EICN) by integrating an arbitrary number of EING units for harvesting low-frequency mechanical energy. Because of absolute conquering of the friction resistance between the tribo-surfaces, the average power density of the EING device in the EICN by the initial charge injection (from a TENG or a power supply) is more than a 15-fold enhancement compared with the previous swing-structured TENG. The EICN can recover to the stable and optimal electrical output state in 90 s without external charge injection, even if the external triggering interrupts for 40 min and then restarts, demonstrating the excellent application feasibility of this strategy. To display the practical application scenario for harvesting large-scale mechanical energy from the environment, a high-performance and ultralow-friction TENG is designed for the initial charge injection to the EICN. Moreover, portable electronic devices are powered successfully to realize the self-powered sensing and remote marine environmental monitoring when an EICN with three EINGs is triggered by the real water wave. This EICN strategy not only can harvest low-frequency swing type mechanical energy but also has the capacity of harvesting the rotational mechanical energy after reasonable structure modification, providing an excellent candidate for large-scale blue energy harvesting in practical applications.
Nanogenerator
Mechanical energy
Electrostatic induction
Electric potential energy
Contact electrification
Cite
Citations (48)
The problem of energy supply for distributed sensors in the Internet of Things is becoming more and more prominent, and the trend of miniaturization of sensors makes the micro mechanical energy widely existing in the environment a possible energy source. [1]–[2] The triboelectric nanogenerator (TENG) based on the coupling effect of triboelectric and electrostatic induction can convert mechanical energy into electrical energy, which provides a new idea for micro energy collection and conversion.[3] The traditional hydro power generation technology is very mature, but due to the working principle and structure limitation, it is difficult to collect micro water energy and blue ocean energy. TENG has advantages in low frequency and wide frequency vibration energy, and has high adaptability to working environment and energy form. TENG is considered as a potential micro water energy collection technology and ideal scheme. In this paper, a liquid-solid triboelectric nanogenerator (LS-TENG) with tubular structure is designed to realize the direct extraction and collection of liquid-solid friction charge without electrostatic induction effect.
Nanogenerator
Mechanical energy
Electrostatic induction
Contact electrification
Electric potential energy
Energy transformation
Cite
Citations (0)
Triboelectrification is an effect that is known to each and every one probably since ancient Greek time, but it is usually taken as a negative effect and is avoided in many technologies. We have recently invented a triboelectric nanogenerator (TENG) that is used to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. As for this power generation unit, in the inner circuit, a potential is created by the triboelectric effect due to the charge transfer between two thin organic/inorganic films that exhibit opposite tribo-polarity; in the outer circuit, electrons are driven to flow between two electrodes attached on the back sides of the films in order to balance the potential. Since the most useful materials for TENG are organic, it is also named organic nanogenerator, which is the first using organic materials for harvesting mechanical energy. In this paper, we review the fundamentals of the TENG in the three basic operation modes: vertical contact-separation mode, in-plane sliding mode, and single-electrode mode. Ever since the first report of the TENG in January 2012, the output power density of TENG has been improved 5 orders of magnitude within 12 months. The area power density reaches 313 W/m(2), volume density reaches 490 kW/m(3), and a conversion efficiency of ∼60% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available but wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water, and more. Alternatively, TENG can also be used as a self-powered sensor for actively detecting the static and dynamic processes arising from mechanical agitation using the voltage and current output signals of the TENG, respectively, with potential applications for touch pad and smart skin technologies. To enhance the performance of the TENG, besides the vast choices of materials in the triboelectric series, from polymer to metal and to fabric, the morphologies of their surfaces can be modified by physical techniques with the creation of pyramid-, square-, or hemisphere-based micro- or nanopatterns, which are effective for enhancing the contact area and possibly the triboelectrification. The surfaces of the materials can be functionalized chemically using various molecules, nanotubes, nanowires, or nanoparticles, in order to enhance the triboelectric effect. The contact materials can be composites, such as embedding nanoparticles in a polymer matrix, which may change not only the surface electrification but also the permittivity of the materials so that they can be effective for electrostatic induction. Therefore, there are numerous ways to enhance the performance of the TENG from the materials point of view. This gives an excellent opportunity for chemists and materials scientists to do extensive study both in the basic science and in practical applications. We anticipate that a better enhancement of the output power density will be achieved in the next few years. The TENG is possible not only for self-powered portable electronics but also as a new energy technology with potential to contribute to the world energy in the near future.
Nanogenerator
Contact electrification
Mechanical energy
Electrostatic induction
Power density
Cite
Citations (2,567)
Nanogenerator
Contact electrification
Electrostatic induction
Mechanical energy
Polytetrafluoroethylene
Open-circuit voltage
Cite
Citations (146)
Ambient mechanical energy is one of the most abundant energy sources around us. It is a promising approach to solve the problem of energy and environment by harvesting such energy due to its cost-effectiveness, environmental friendliness and sustainability. Recently, triboelectric nanogenerator (TENG) has been proposed as an effective and promising technology for harvesting ambient mechanical energy. Herein, a coaxial rotatory-freestanding TENG (CRF-TENG) was developed and its theoretical model was constructed. An approximate V–Q–α relationship was derived and the explicit analytical solutions of the transferred charge, output current, voltage and average power are obtained from numerically calculation. Finally, to verify the theoretical results, the real output performances of as-fabricated CRF-TENG were measured. The experimental results are consistent with the theoretical ones. The newly developed TENG mode greatly expands the applicability of TENGs for harvesting energy from ambient rotating mechanical motion.
Nanogenerator
Coaxial
Mechanical energy
Electric potential energy
Electrostatic induction
Cite
Citations (20)
In this article, triboelectric effect has been used to harvest mechanical energy from human motion and convert it into electrical energy. To do so, different ways of optimizing the energy generated have been studied through the correct selection of materials, the design of new spacers to improve the contact surface area, and charge injection by high-voltage corona charging to increase the charge density of dielectric materials. Finally, a triboelectric nanogenerator (TENG) has been manufactured, which is capable of collecting the mechanical energy of the force applied by hand tapping and using it to power miniaturized electronic sensors in a self-sufficient and sustainable way. This work shows the theoretical concept and simulations of the proposed TENG device, as well as the experimental work carried out.
Nanogenerator
Mechanical energy
Electrostatic induction
Tapping
Power density
Electric potential energy
Finger tapping
Cite
Citations (9)
Triboelectrification is an effect that is known to eachand every one probably ever since the ancient Greektime, but it is usually taken as a negative effect and isavoided in many technologies. We have recentlyinvented a triboelectric nanogenerator (TENG) that is used to convert mechanical energy into electricity by a conjunction of triboelectrification and electro- static induction. As for this power generation unit, in the inner circuit, a potential is created by the triboelectric effect due to the charge transfer between two thin organic/inorganic films that exhibit opposite tribopolarity; in the outer circuit, electrons are driven to flow between two electrodes attached on the back sides of the films in order to balance the potential. Ever since the first report of the TENG in January 2012, the output power density of TENG has been improved for five orders of magnitude within 12 months. The area power density reaches 500 W/m2, volume density reaches 490 kW/m3, and a conversion efficiency of ~50% has been demonstrated. The TENG can be applied to harvest all kind mechanical energy that is availa- ble but wasted in our daily life, such as human motion, walking, vibration, mechanical trigger- ing, rotating tire, wind, flowing water and more. Alternatively, TENG can also be used as a self-powered sensor for actively detecting the static and dynamic processes arising from me- chanical agitation using the voltage and current output signals of the TENG, respectively, with potential applications for touch pad and smart skin technologies. The TENG is possible not only for self-powered portable electronics, but also as a new energy technology with a potential of contributing to the world energy in the near future.
Nanogenerator
Mechanical energy
Electrostatic induction
Power density
Cite
Citations (0)
Flowing water contains not only mechanical kinetic energy, but also the electrostatic energy owing to the triboelectric charges caused by its contact with surrounding media such as air. In this paper, a water wheel hybridized triboelectric nanogenerator (TENG), composed of a water-TENG part and a disk-TENG part, has been developed for simultaneously harvesting the two types of energies from the tap water flowing from a household faucet. The wheel blades of the hybridized TENG are composed by superhydrophobic polytetrafluoroethylene (PTFE) thin films with nanostructures, which are used as water-TENG to harvest the electrostatic energy from the flowing water. In addition, the flowing water impacted on the wheel blades also causes the rotation motion of disk-TENG and can be used to harvest the mechanical kinetic energy. The short-circuit current of the water-TENG and the disk-TENG at a flowing water rate of 54 mL/s can reach 12.9 and 3.8 μA, respectively. The hybridized TENG is also demonstrated to harvest wind energy and acts as a self-powered sensor to detect the flowing water rate and wind speed. All these results show the potentials of the hybridized TENG for harvesting multiple types of energies from the environment.
Nanogenerator
Mechanical energy
Electrostatic induction
Contact electrification
Electric potential energy
Cite
Citations (196)