logo
    Noncovalent Self-Assembled Smart Gold(III) Porphyrin Nanodrug for Synergistic Chemo-Photothermal Therapy
    49
    Citation
    54
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Self-assembly is a powerful means to fabricate multifunctional smart nanotheranostics. However, the complicated preparation, toxicity of responsive carriers, and low loading efficiency of drug cargo hinder the outcome. Herein, we developed a responsive carrier-free noncovalent self-assembly strategy of a metallized Au(III) tetra-(4-pyridyl) porphine (AuTPyP) anticancer drug for the preparation of a heat/acid dual-stimulated nanodrug, and it generated a better photothermal effect than monomers under irradiation. The photothermal effect promoted the protonation of the hydrophobic pyridyl group and the following release into tumorous acidic microenvironments. With cRGD modification, the released drug induced the aggravation of intracellular reactive oxygen species (ROS) via the activity inhibition of thioredoxin reductase (TrxR) for synergistic chemo-photothermal therapy of tumors.
    Keywords:
    Photothermal effect
    Surface Modification
    Abstract The surface plasmon resonance (SPR) induced photothermal and photoelectrocatalysis effects are crucial for catalytic reactions in many areas. However, it is still difficult to distinguish these two effects quantitatively. Here we used surface‐enhanced Raman scattering (SERS) to detect the photothermal and photoelectrocatalytic effects induced by SPR from Au core Pt shell Nanoparticles (Au@Pt NPs), and calculated the quantitative contribution of the ratio of the photothermal and photoelectrocatalysis effects towards the catalytic activity. The photothermal effect on the nanoparticle surface after illumination is detected by SERS. The photoelectrocatalytic effect generated from SPR is proved by SERS with a probe molecule of p ‐aminothiophenol (PATP).
    Photothermal effect
    Citations (184)
    Abstract The surface plasmon resonance (SPR) induced photothermal and photoelectrocatalysis effects are crucial for catalytic reactions in many areas. However, it is still difficult to distinguish these two effects quantitatively. Here we used surface‐enhanced Raman scattering (SERS) to detect the photothermal and photoelectrocatalytic effects induced by SPR from Au core Pt shell Nanoparticles (Au@Pt NPs), and calculated the quantitative contribution of the ratio of the photothermal and photoelectrocatalysis effects towards the catalytic activity. The photothermal effect on the nanoparticle surface after illumination is detected by SERS. The photoelectrocatalytic effect generated from SPR is proved by SERS with a probe molecule of p ‐aminothiophenol (PATP).
    Photothermal effect
    Citations (34)
    Photothermal neural activity inhibition has emerged as a minimally invasive neuromodulation technology with submillimeter precision. One of the techniques involves the utilization of plasmonic gold nanoparticles (AuNPs) to modulate neural activity by photothermal effects ("thermoplasmonics"). A surface modification technique is often required to integrate AuNPs onto the neural interface. Here, polydopamine (pDA), a multifunctional adhesive polymer with a wide light absorption spectrum, is introduced both as a primer layer for the immobilization of gold nanorods (GNRs) on the neural interface and as an additional photothermal agent by absorbing near-infrared red (NIR) lights for more efficient photothermal effects. First, the optical and photothermal properties of pDA as well as the characteristics of GNRs attached onto the pDA film are investigated for the optimized photothermal neural interface. Due to the covalent bonding between GNR surfaces and pDA, GNRs immobilized on pDA showed strong attachment onto the surface, yielding a more stable photothermal platform. Lastly, when photothermal neural stimulation was applied to the primary rat hippocampal neurons, the substrate with GNRs immobilized on the pDA film allowed more laser power-efficient photothermal neuromodulation as well as photothermal cell death. This study suggests the feasibility of using pDA as a surface modification material for developing a photothermal platform for the inhibition of neural activities.
    Photothermal effect
    Nanorod
    Surface Modification
    Citations (13)
    In this study, the photothermal performance of lignin-based nanospheres was investigated. Subsequently, a photothermal actuator was prepared using lignin-based carbon nanospheres (LCNSs). The results demonstrated that LCNSs exhibited an impressive photothermal conversion efficiency of up to 83.8%. This extreme efficiency significantly surpasses that of lignin nanospheres (LNSs) and covalently stabilized LNSs (HT-LNSs). As a structural material, a hydrophobic coating was effectively engineered by LCNSs on the filter paper, achieving a water contact angle of 151.9° ± 4.6°, while maintaining excellent photothermal effects (with a temperature increment from room temperature to 138 °C in 2 s). When employing hydrophobic filter paper as the substrate for the photothermaldriven actuator, under the influence of a 1.0 W/cm2 power–density NIR laser, the material exhibited outstanding photothermal actuation, achieving speeds up to 16.4 mm/s. In addition, the direction of motion of the actuator can be adjusted in accordance with the location of the NIR light irradiation. This study offers valuable perspectives on the application of LNSs for highvalue applications and the development of innovative photothermal-driven actuators.
    Photothermal effect
    Citations (1)