NOTCH signaling pathway is required for bovine early embryonic development
26
Citation
45
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract The NOTCH signaling pathway plays an important role in regulating various biological processes, including lineage specification and apoptosis. Multiple components of the NOTCH pathway have been identified in mammalian preimplantation embryos. However, the precise role of the NOTCH pathway in early embryonic development is poorly understood, especially in large animals. Here, we show that the expression of genes encoding key transcripts of the NOTCH pathway is dynamic throughout early embryonic development. We also confirm the presence of active NOTCH1 and RBPJ. By using pharmacological and RNA interference tools, we demonstrate that the NOTCH pathway is required for the proper development of bovine early embryos. This functional consequence could be partly attributed to the major transcriptional mediator, Recombination Signal Binding Protein For Immunoglobulin Kappa J Region (RBPJ), whose deficiency also compromised the embryo quality. Indeed, both NOTCH1 and RBPJ knockdown cause a significant increase of histone H3 serine 10 phosphorylation (pH3S10, a mitosis marker) positive blastomeres, suggesting a cell cycle arrest at mitosis. Importantly, RNA sequencing analyses reveal that either NOTCH1 or RBPJ depletion triggers a reduction in H1FOO that encodes the oocyte-specific linker histone H1 variant. Interestingly, depleting H1FOO results in detrimental effects on the developmental competence of early embryos, similar with NOTCH1 inhibition. Overall, our results reveal a crucial role for NOTCH pathway in regulating bovine preimplantation development, likely by controlling cell proliferation and maintaining H1FOO expression.Cite
Citations (1,025)
Hes3 signaling axis
Cyclin-dependent kinase 8
Notch proteins
Cell Signaling
Cite
Citations (2)
The strength of Notch signaling contributes to pleiotropic actions of Notch; however, we do not yet have a full understanding of the molecular regulation of Notch-signaling strength. We have investigated the mode of Notch activation in binary fate specification in the
Lineage (genetic)
Cite
Citations (5)
Notchシグナル伝達経路は胎生発生段階に機能をしている.遺伝子分析の結果,形態発生におけるNotchシグナルは重要な役割を果たしている事が判明した.最近の研究において,様々な悪性腫瘍においてこのNotch pathwayが活性化されているとの報告があるが,ヒトの骨腫瘍において活性化しているかどうかは不明である.我々は,Notchシグナル経路について,RT-PCR法,免疫染色法検討した.γ-secretase inhibitorをHOSに添加しMTT法にてcell viavilityを検討した.すべての検体にてNotch1, 2, Jagged1のmRNAの発現上昇を認めた.免疫染色法にてHOS及び臨床検体においてNotch-ICの核内局在を認めた.γ-secretase阻害薬はNotchシグナル経路を遮断し細胞増殖が有意に抑制されている事を確認した.本研究は,Notch経路が骨肉腫の新たな治療的ターゲットとなり得る事を示唆している.
Notch proteins
Cyclin-dependent kinase 8
Notch 1
Hes3 signaling axis
Cite
Citations (0)
The Delta-Notch pathway is a signal exchanger between adjacent cells to regulate numerous differentiation steps during embryonic development. Blood vessel formation by sprouting angiogenesis requires high expression of the Notch ligand DLL4 in the leading tip cell, while Notch receptors in the trailing stalk cells are activated by DLL4 to achieve strong Notch signaling activity. Upon ligand binding, Notch receptors are cleaved by ADAM proteases and gamma-secretase. This releases the intracellular Notch domain that acts as a transcription factor. There is evidence that also Notch ligands (DLL1, DLL4, JAG1, JAG2) are processed upon receptor binding to influence transcription in the ligand-expressing cell. Thus, the existence of bi-directional Delta-Notch signaling has been proposed. We report here that the Notch ligands DLL1 and JAG1 are processed in endothelial cells in a gamma-secretase-dependent manner and that the intracellular ligand domains accumulate in the cell nucleus. Overexpression of JAG1 intracellular domain (ICD) as well as DLL1-ICD, DLL4-ICD and NOTCH1-ICD inhibited endothelial proliferation. Whereas NOTCH1-ICD strongly repressed endothelial migration and sprouting angiogenesis, JAG1-ICD, DLL1-ICD and DLL4-ICD had no significant effects. Consistently, global gene expression patterns were only marginally affected by the processed Notch ligands. In addition to its effects as a transcription factor, NOTCH1-ICD promotes cell adhesion to the extracellular matrix in a transcription-independent manner. However, JAG1-ICD, DLL1-ICD and DLL4-ICD did not influence endothelial cell adhesion. In summary, reverse signaling of Notch ligands appears to be dispensable for angiogenesis in cellular systems.
JAG1
Notch proteins
Hes3 signaling axis
Cyclin-dependent kinase 8
Cite
Citations (23)
NOTCH signaling induced by Delta1 (DLL1) and Jagged1 (JAG1) NOTCH ligands is modulated by the β3N-acetylglucosaminyl transferase Fringe. LFNG (Lunatic Fringe) and MFNG (Manic Fringe) transfer N-acetylglucosamine (GlcNAc) to O-fucose attached to EGF-like repeats of NOTCH receptors. In co-culture NOTCH signaling assays, LFNG generally enhances DLL1-induced, but inhibits JAG1-induced, NOTCH signaling. In mutant Chinese hamster ovary (CHO) cells that do not add galactose (Gal) to the GlcNAc transferred by Fringe, JAG1-induced NOTCH signaling is not inhibited by LFNG or MFNG. In mouse embryos lacking B4galt1, NOTCH signaling is subtly reduced during somitogenesis. Here we show that DLL1-induced NOTCH signaling in CHO cells was enhanced by LFNG, but this did not occur in either Lec8 or Lec20 CHO mutants lacking Gal on O-fucose glycans. Lec20 mutants corrected with a B4galt1 cDNA became responsive to LFNG. By contrast, MFNG promoted DLL1-induced NOTCH signaling better in the absence of Gal than in its presence. This effect was reversed in Lec8 cells corrected by expression of a UDP-Gal transporter cDNA. The MFNG effect was abolished by a DDD to DDA mutation that inactivates MFNG GlcNAc transferase activity. The binding of soluble NOTCH ligands and NOTCH1/EGF1–36 generally reflected changes in NOTCH signaling caused by LFNG and MFNG. Therefore, the presence of Gal on O-fucose glycans differentially affects DLL1-induced NOTCH signaling modulated by LFNG versus MFNG. Gal enhances the effect of LFNG but inhibits the effect of MFNG on DLL1-induced NOTCH signaling, with functional consequences for regulating the strength of NOTCH signaling. NOTCH signaling induced by Delta1 (DLL1) and Jagged1 (JAG1) NOTCH ligands is modulated by the β3N-acetylglucosaminyl transferase Fringe. LFNG (Lunatic Fringe) and MFNG (Manic Fringe) transfer N-acetylglucosamine (GlcNAc) to O-fucose attached to EGF-like repeats of NOTCH receptors. In co-culture NOTCH signaling assays, LFNG generally enhances DLL1-induced, but inhibits JAG1-induced, NOTCH signaling. In mutant Chinese hamster ovary (CHO) cells that do not add galactose (Gal) to the GlcNAc transferred by Fringe, JAG1-induced NOTCH signaling is not inhibited by LFNG or MFNG. In mouse embryos lacking B4galt1, NOTCH signaling is subtly reduced during somitogenesis. Here we show that DLL1-induced NOTCH signaling in CHO cells was enhanced by LFNG, but this did not occur in either Lec8 or Lec20 CHO mutants lacking Gal on O-fucose glycans. Lec20 mutants corrected with a B4galt1 cDNA became responsive to LFNG. By contrast, MFNG promoted DLL1-induced NOTCH signaling better in the absence of Gal than in its presence. This effect was reversed in Lec8 cells corrected by expression of a UDP-Gal transporter cDNA. The MFNG effect was abolished by a DDD to DDA mutation that inactivates MFNG GlcNAc transferase activity. The binding of soluble NOTCH ligands and NOTCH1/EGF1–36 generally reflected changes in NOTCH signaling caused by LFNG and MFNG. Therefore, the presence of Gal on O-fucose glycans differentially affects DLL1-induced NOTCH signaling modulated by LFNG versus MFNG. Gal enhances the effect of LFNG but inhibits the effect of MFNG on DLL1-induced NOTCH signaling, with functional consequences for regulating the strength of NOTCH signaling.
JAG1
Somitogenesis
Notch proteins
Cite
Citations (35)
Notch proteins
Hes3 signaling axis
Cell fate determination
Cell Signaling
Cyclin-dependent kinase 8
Lateral inhibition
Cite
Citations (387)
Hes3 signaling axis
Cyclin-dependent kinase 8
Notch proteins
Gamma secretase
Cite
Citations (23)
Hes3 signaling axis
Notch proteins
Cyclin-dependent kinase 8
Cell Signaling
Cite
Citations (1)
Hes3 signaling axis
Cyclin-dependent kinase 8
Notch proteins
Cell Signaling
Cite
Citations (48)