logo
    Differential reaction of hexaploid and tetraploid wheat to Fusarium graminearum chemotypes in a controlled environment
    5
    Citation
    68
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Fusarium head blight (FHB) has a negative impact on cereal food safety, quality and yield. The majority of FHB resistance genes in wheat (Triticum spp.) have been identified based on reaction to Fusarium graminearum, which, in Canada, has two prevalent trichothecene chemotypes, 3-acetyl-deoxyinvalenol (ADON) and 15-ADON. Three hexaploid (Triticum aestivum L.) and four tetraploid (Triticum turgidum L. ssp. durum and Triticum turgidum L. spp. dicoccoides (Korn. ex Asch. & Graebn.) Thell.) wheat genotypes with different genes for resistance and with different reactions to F. graminearum were evaluated in replicated greenhouse trials to determine if the resistance genes currently deployed in Canadian wheat are effective against both the 3-ADON and 15-ADON chemotypes. The development of FHB was rated as disease severity. The genotypes showed differential responses, with a higher level of disease development in the hexaploid wheat genotypes inoculated with the 3-ADON than with the 15-ADON chemotype. The opposite was observed in the tetraploid wheat genotypes. Tetraploid genotype BGRC3487 and a hexaploid genotype ND2710 showed similar resistance to both 3-ADON and 15-ADON chemotypes. These would be effective sources to breed lines resistant to both 3-ADON and 15-ADON chemotypes and reduce FHB risk.
    Keywords:
    Chemotype
    Abstract BACKGROUND Fusarium head blight ( FHB ) of wheat is an important disease causing yield losses and mycotoxin contamination. The aim of the work was to detect and characterise trichothecene producing Fusarium species in durum and soft wheat cultivated in an area of central Italy in 2009 and 2010 and to determine trichothecene contamination by LC‐MS / MS in the grain. RESULTS F. graminearum s. str. was the most frequent species. In 2009, the occurrence of F. avenaceum and F. poae was higher than in 2010. Among F. graminearum strains, the 15‐acetyl deoxynivalenol (15‐ ADON ) chemotype could be found more frequently, followed by nivalenol ( NIV ) and 3‐ ADON chemotypes, while all F. culmorum isolates belonged to the 3‐ ADON chemotype. All F. poae strains were NIV chemotypes. In vitro trichothecene production confirmed molecular characterisation. Durum wheat was characterised by a higher average DON contamination with respect to soft wheat, NIV was always detected at appreciable levels while type‐A trichothecenes were mostly found in durum wheat samples in 2009 with 6% of samples exceeding the contamination level recently recommended by the European Union. CONCLUSION Climatic conditions were confirmed to be predominant factors influencing mycotoxigenic species composition and mycotoxin contaminations. However, NIV contamination was found to occur irrespective of climatic conditions, suggesting that it may often represent an under‐estimated risk to be further investigated. © 2014 Society of Chemical Industry
    Chemotype
    Vomitoxin
    Citations (134)
    Abstract A total of 42 strains of Fusarium graminearum isolated from cereals, maize, grasses and air were screened for their ability to produce 8‐ketotrichothecenes [deoxynivalenol (DON), 3‐acetyldeoxynivalenol (ADON), 15‐ADON, nivalenol (NIV)]. The isolates were grown on the solid substrate of rice grains in the dark at 25 and 10°C for 28 days. Toxin analyses were made by gas chromatography mass spectrometry (GC‐MS) technique. The GC‐MS was more suitable for qualitative and quantitative determination of acetyl‐DONs, than high‐performance liquid chromatographic (HPLC) technique. Of the 42 F. graminearum isolates, 39 produced DON, 34 produced both 3‐ and 15‐ADON and one produced DON‐NIV. The quantity of DON varied with isolates (46–6840 mg/kg). Our results suggest that strains of F. graminearum prevailing in Hungarian cereal‐ and maize‐growing regions belong to DON chemotype.
    Chemotype
    Fusarium graminearum is one of the most important causes of FHB or wheat scab in different part of the world. This fungus is able to produce diffrent Trichothecene mycotoxins such as Nivalenol (NIV) and Deoxynivalenol (DON) which are harmful for both human and animals. To determine chemotypes of Trichothecene, a total of 100 isolates from different fields of Golestan province in Iran including Gorgan, Kordkuy, Bandaregaz, Gonbad, Minodasht, Kalaleh and Azadshahr were identified as F. graminearum using morphological features. The identity of 96 isolates was confirmed by polymerase chain reaction (PCR) assay using F. graminearum species-specific primers (Fg16F/Fg16R). Based on sequences of Tri13 gene involved in the mycotoxin biosynthetic pathway, PCR assays were used to detect Nivalenol (NIV) and Deoxynivalenol (DON) chemotypes. Of the 96 tested isolates in Tri13 PCR assays, 70 classified as NIV chemotype and the remaining 26 isolates as DON producers. These results indicated that NIV chemotype was the most dominant chemotype in studied region. A greater proportion of NIV chemotype was found in Gorgan fields (P < 0.05, P < 0.0001), whereas greater proportion of DON was detected in Gonbad fields (P < 0.05, P < 0.0001). PCR assay-based chemotyping was confirmed by HPLC method. These results demonstrated that PCR assay and HPLC could be used as rapid, reliable and cost-effective methods for the detection and identification of mycotoxin-producing Fusarium-species and may thus help to develop strategies to avoid or reduce mycotoxin contamination of cereals.
    Chemotype
    Citations (5)
    The role of Fusarium graminearum trichothecene-chemotypes in disease outcomes was evaluated by point inoculation in a series of wheat lines with different levels of resistance to Fusarium head blight (FHB). Four inocula, each consisting of a composite of four strains with either 15-acetyldeoxynivalenol (ADON) chemotypes from "traditional" or emergent populations, a 3-ADON chemotype, or a nivalenol (NIV) chemotype, were compared. The evaluated wheat included Canadian lines with different levels of FHB resistance/susceptibility and double haploid lines developed from crosses of these lines. Highly resistant lines were resistant to infection by all of the F. graminearum chemotypes evaluated. In the moderately susceptible/resistant wheat lines, the 3-ADON producers and the emergent 15-ADON population were, in some instances, more aggressive and resulted in higher Fusarium damaged kernel scores and levels of trichothecene accumulation. The data presented in this study demonstrate the importance of growing highly resistant wheat cultivars in the current climate of an evolving F. graminearum population, and suggest that moderate levels of FHB resistance may not be sufficient to minimize trichothecene contamination of grain from F. graminearum-infected wheat.
    Chemotype
    Gibberella zeae
    Vomitoxin
    Citations (59)
    Fusarium graminearum (Schwabe) contaminates agricultural crops and commodities with trichothecenes, mostly deoxynivalenol and its acetyl-derivatives. Current techniques available to detect final mycotoxin contamination products usually require an extended time lag between sampling and the corresponding report, and include different clean-up steps and eventually derivatisation. This study was aimed to develop a methodology to detect toxigenic F. graminearum prior to mycotoxin production. Headspace solid-phase microextraction coupled to capillary gas chromatography is shown to be useful to predict the potential of trichothecene mycotoxin formation by detecting the presence of F. graminearum at early stages of fungal growth in wheat cultivars, based on the detection of trichodiene (TRI), the volatile intermediate of trichothecenes. We showed that TRI is a useful marker to detect toxigenic Fusarium in wheat spikes from live plants, regardless of the actual development of Fusarium head blight (FHB). This is the first predictive methodology for FHB and trichothecene occurrence in field-collected samples. It might be a useful tool to help to prevent the risk of mycotoxin contamination.
    Vomitoxin
    Citations (18)
    Wheat is a staple food that is important to global food security, but in epidemic years, fungal pathogens can threaten production, quality, and safety of wheat grain. Globally, one of the most important fungal diseases of wheat is Fusarium head blight (FHB). This disease can be caused by several different Fusarium species with known differences in aggressiveness and mycotoxin-production potential, with the trichothecene toxin deoxynivalenol (DON) and its derivatives being of particular concern. In North America, the most predominant species causing FHB is F. graminearum, which has two distinct sub-populations that are commonly classified into two main chemotypes/genotypes based on their propensity to form trichothecene derivatives, namely 15-acetyldeoxynivalenol (15-ADON) and 3-acetyldeoxynivalenol (3-ADON).We used a panel of 13 DNA markers to perform species and ADON genotype identification for 55, 444 wheat kernels from 7, 783 samples originating from across Canada from 2014 to 2020.Based on single-seed analyses, we demonstrate the relationships between Fusarium species and trichothecene chemotype with sample year, sample location, wheat species (hexaploid and durum wheat), severity of Fusarium damaged kernels (FDK), and accumulation of DON. Results indicate that various Fusarium species are present across wheat growing regions in Canada; however, F. graminearum is the most common species and 3-ADON the most common genotype. We observed an increase in the occurrence of the 3-ADON genotype, particularly in the western Prairie regions. Our data provides important information on special-temporal trends in Fusarium species and chemotypes that can aid with the implementation of integrated disease management strategies to control the detrimental effects of this devastating disease.
    Wheat grain