logo
    A New Protocol for Targeted insertion using CRISPR-Cas9, Oligo Single-Stranded DNA and Protoplast Regeneration
    0
    Citation
    38
    Reference
    19
    Related Paper
    Abstract:
    Summary Precise insertion of DNA sequences into specific genome locations is essential for genome editing. Current Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)–CRISPR associated protein (Cas) protocols rely on homology-directed repair (HDR). These protocols require laborious vector construction and suffer from low efficiency. Oligo DNA can be used as donor DNA (DD) for precise DNA insertion, or targeted insertion (TI) via nonhomologous end joining (NHEJ) in many species. Here, we report a simple protocol that eliminates the need for expensive equipment and vector construction by using polyethylene glycol (PEG) to deliver non-modified synthetic single-stranded oligo DNA (ssODN) and CRISPR-Cas9 ribonucleoprotein (RNP) into protoplasts. Up to 50.0% targeted insertion was achieved in Nicotiana benthamiana and 13.6% in Rapid Cycling Brassica oleracea (RCBO) without antibiotic selection. Using 60 nt DD that contained 27 nt homologous arms, 6 out of 22 regenerated plants showed TI, and one of them had a precise insertion of 6 bp EcoRI (4.5%) in N. benthamiana. Based on whole-genome sequencing, DD inserted only in the double-strain break (DSB) positions that were induced by the CRISPR-Cas RNP. Importantly, the analysis of T1 progenies indicated that the TI sequences were successfully transmitted into the next generation.
    Keywords:
    Homology directed repair
    Genome Engineering
    Guide RNA
    The clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a versatile genome editing tool with high efficiency.A guide sequence of 20 nucleotides (nt) is commonly used in application of CRISPR/Cas9; however, the relationship between the length of the guide sequence and the efficiency of CRISPR/ Cas9 in porcine cells is still not clear.To illustrate this issue, guide RNAs of different lengths targeting the EGFP gene were designed.Specifically, guide RNAs of 17 nt or longer were sufficient to direct the Cas9 protein to cleave target DNA sequences, while 15 nt or shorter guide RNAs had loss-of-function.Full-length guide RNAs complemented with mismatches also showed loss-of-function.When the shortened guide RNA and target DNA heteroduplex (gRNA:DNA heteroduplex) was blocked by mismatch, the CRISPR/Cas9 would be interfered with.These results suggested the length of the gRNA:DNA heteroduplex was a key factor for maintaining high efficiency of the CRISPR/Cas9 system rather than weak bonding between shortened guide RNA and Cas9 in porcine cells.
    Heteroduplex
    Guide RNA
    Citations (19)
    Altering endogenous genes in cells is an integral tool of modern cell biology. The ease-of-use of the CRISPR/Cas9 system to introduce genomic DNA breaks at specific sites in vivo has led to its rapid and wide adoption. In the absence of a DNA template, the lesion is repaired by nonhomologous end joining resolving as internal deletions. However, in the presence of a homologous DNA template, homology-directed repair occurs with variable efficiencies. Recent work has demonstrated that highly efficient gene targeting can be induced by combining CRISPR/Cas9 targeting of genomic loci with recombinant adeno-associated virus (rAAV) to provide a single-stranded homologous DNA template. Here we review the current state of CRISPR/Cas-based gene editing and provide a practical guide to applying the CRISPR/Cas and rAAV system for highly efficient, time- and cost-effective gene targeting.
    Homology directed repair
    Gene targeting
    Citations (28)
    The CRISPR-Cas9 system is a powerful genome-editing tool that promises application for gene editing therapies. The Cas9 nuclease is directed to the DNA by a programmable single guide (sg)RNA, and introduces a site-specific double-stranded break (DSB). In mammalian cells, DSBs are either repaired by non-homologous end joining (NHEJ), generating small insertion/deletion (indel) mutations, or by homology-directed repair (HDR). If ectopic donor templates are provided, the latter mechanism allows editing with single-nucleotide precision. The preference of mammalian cells to repair DSBs by NHEJ rather than HDR, however, limits the potential of CRISPR-Cas9 for applications where precise editing is needed. To enhance the efficiency of DSB repair by HDR from donor templates, we recently engineered a CRISPR-Cas9 system where the template DNA is bound to the Cas9 enzyme. In short, single-stranded oligonucleotides were labeled with O6-benzylguanine (BG), and covalently linked to a Cas9-SNAP-tag fusion protein to form a ribonucleoprotein-DNA (RNPD) complex consisting of the Cas9 nuclease, the sgRNA, and the repair template. Here, we provide a detailed protocol how to generate O6-benzylguanine (BG)-linked DNA repair templates, produce recombinant Cas9-SNAP-tag fusion proteins, in vitro transcribe single guide RNAs, and transfect RNPDs into various mammalian cells.
    Guide RNA
    Homology directed repair
    Nuclease
    Citations (15)
    Abstract Homologous recombination-mediated genome engineering has been broadly applied in prokaryotes with high efficiency and accuracy. However, this method is limited in realizing larger-scale genome editing with numerous genes or large DNA fragments because of the relatively complicated procedure for DNA editing template construction. Here, we describe a CRISPR-Cas9 assisted non-homologous end-joining (CA-NHEJ) strategy for the rapid and efficient inactivation of bacterial gene (s) in a homologous recombination-independent manner and without the use of selective marker. Our study show that CA-NHEJ can be used to delete large chromosomal DNA fragments in a single step that does not require homologous DNA template. It is thus a novel and powerful tool for bacterial genomes reducing and possesses the potential for accelerating the genome evolution.
    Non-homologous end joining
    Genome Engineering
    Bacterial genome size
    Citations (121)
    The CRISPR/Cas9 genome engineering system has revolutionized biology by allowing for precise genome editing with little effort. Guided by a single guide RNA (sgRNA) that confers specificity, the Cas9 protein cleaves both DNA strands at the targeted locus. The DNA break can trigger either non-homologous end joining (NHEJ) or homology directed repair (HDR). NHEJ can introduce small deletions or insertions which lead to frame-shift mutations, while HDR allows for larger and more precise perturbations. Here, we present protocols for generating knockout cell lines by coupling established CRISPR/Cas9 methods with two options for downstream selection/screening. The NHEJ approach uses a single sgRNA cut site and selection-independent screening, where protein production is assessed by dot immunoblot in a high-throughput manner. The HDR approach uses two sgRNA cut sites that span the gene of interest. Together with a provided HDR template, this method can achieve deletion of tens of kb, aided by the inserted selectable resistance marker. The appropriate applications and advantages of each method are discussed.
    Genome Engineering
    Gene knockout
    Homology directed repair
    Subgenomic mRNA
    Gene knockin
    Selectable marker
    Non-homologous end joining
    Gene targeting
    Guide RNA
    Citations (5)
    Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.
    Genome Engineering
    Guide RNA
    Nuclease
    Homology directed repair
    Non-homologous end joining
    Gene targeting
    Citations (0)
    The type2 CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated protein 9) is an efficient RNA-guided genome-editing technique. Guided by sgRNA, the Cas9 endonuclease generates site-specific double-stranded breaks (DSB) at specific site, which is amenable to repair by homology-directed repair (HDR) to generate a designed knock-out or knock-in transgene. In combination with CRISPR/Cas9 and Cre/loxP or FLP/FRT system, efficient gene targeting can be achieved, and meanwhile screening markers introduced can be readily removed except a 34-base pair residual fragment. Thus, difficulties remain in accurate editing of the genome without introducing any extraneous sequences. In human induced pluripotent stem cells (iPSCs), a two-step strategy has been developed using CRISPR/Cas9 and the piggyBac system to establish a seamless genomic editing, in which CRISPR/Cas9 is initially used to introduce mutations along with screening markers by HDR, then the markers are precisely excised by piggyBac transposase. Using this strategy, we have successfully transformed the tyrosine to cysteine at position 21 within the 18th exon of the CG4894 gene in the Drosophila genome without introducing any extraneous sequence. Hence, this strategy provides more options for precise and seamless editing of the Drosophila genome.
    Transposase
    Gene targeting
    Citations (0)
    We and others recently demonstrated that the readily programmable CRISPR/Cas9 system can be used to edit the Drosophila genome. However, most applications to date have relied on aberrant DNA repair to stochastically generate frameshifting indels and adoption has been limited by a lack of tools for efficient identification of targeted events. Here we report optimized tools and techniques for expanded application of the CRISPR/Cas9 system in Drosophila through homology-directed repair (HDR) with double-stranded DNA (dsDNA) donor templates that facilitate complex genome engineering through the precise incorporation of large DNA sequences, including screenable markers. Using these donors, we demonstrate the replacement of a gene with exogenous sequences and the generation of a conditional allele. To optimize efficiency and specificity, we generated transgenic flies that express Cas9 in the germline and directly compared HDR and off-target cleavage rates of different approaches for delivering CRISPR components. We also investigated HDR efficiency in a mutant background previously demonstrated to bias DNA repair toward HDR. Finally, we developed a web-based tool that identifies CRISPR target sites and evaluates their potential for off-target cleavage using empirically rooted rules. Overall, we have found that injection of a dsDNA donor and guide RNA-encoding plasmids into vasa-Cas9 flies yields the highest efficiency HDR and that target sites can be selected to avoid off-target mutations. Efficient and specific CRISPR/Cas9-mediated HDR opens the door to a broad array of complex genome modifications and greatly expands the utility of CRISPR technology for Drosophila research.
    Homology
    Homology directed repair
    Citations (964)
    The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system may be re-purposed for site-specific eukaryotic genome engineering. CRISPR/Cas9 is an inexpensive, facile, and efficient genome editing tool that allows genetic perturbation of genes and genetic elements. Here we present a simple methodology for CRISPR design, cloning, and delivery for the production of genomic deletions. In addition, we describe techniques for deletion, identification, and characterization. This strategy relies on cellular delivery of a pair of chimeric single guide RNAs (sgRNAs) to create two double strand breaks (DSBs) at a locus in order to delete the intervening DNA segment by non-homologous end joining (NHEJ) repair. Deletions have potential advantages as compared to single-site small indels given the efficiency of biallelic modification, ease of rapid identification by PCR, predictability of loss-of-function, and utility for the study of non-coding elements. This approach can be used for efficient loss-of-function studies of genes and genetic elements in mammalian cell lines.
    Genome Engineering
    Recombineering
    Citations (148)