Study of excited $$\varvec{\varXi }$$ baryons with the $$\overline{\text{ P }}$$ANDA detector
G. BaruccaFabrizio Davı́Giovanni LancioniP. MengucciLuigi MontaltoP. P. NataliNicola PaoneD. RinaldiLorenzo ScaliseB. KruscheM. SteinacherZ. LiuCheng LiuB. LiuX. Y. ShenS. S. SunG. ZhaoJ. Y. ZhaoM. AlbrechtW. AlkakhiS. BökelmannS. C. CoenF. FeldbauerMartin FinkJ. FrechV. FreudenreichM. FritschJ. GrochowskiR. HagdornF. H. HeinsiusT. HeldT. HoltmannI. KeshkH. KochB. KopfM. KümmelM. KüßnerJianglong LiL. LinzenS. MaldanerJ. OppotschS. PankoninM. PelizäS. PflügerJ. ReherG. ReicherzC. SchnierM. SteinkeT. TrifftererChristoph WenzelU. WiednerH. DenizliN. ErU. KeskinS. YerlikayaA. YılmazR. BeckVinita ChauhanCh. HammannJ. HartmannB. KetzerJ. MüllersB. SalisburyC. SchmidtU. ThomaM. UrbanA. BianconiM. BragadireanuD. PanteaMariusz DomagałaGrzegorz FiloE. LisowskiF. LisowskiM. MichałekP. PoznańskiJ. PłażekK. KorcylPiotr LebiedowiczK. PyszW. SchäferAntoni SzczurekM. FirlejT. FiutowskiM. IdzikJ. MorońK. SwientekP. TerleckiG. KorcylR. LalikA. MaligeP. MoskalK. NowakowskiWitold Wojciech PrzygodaN. RathodP. SalaburaJ. SmyrskiI. AugustinR. BöhmI. LehmannL. SchmittV. VarentsovM. Al-TuranyA. BeliasH. DeppeR. DzhygadloH. FlemmingA. GerhardtK. GötzenA. HeinzP. JiangR. KarabowiczSascha KochU. KurillaD. LehmannJ. LühningU. LynenH. OrthΚ. PetersG. SchepersC. J. SchmidtC. SchwarzJ. SchwieningA. TäschnerM. TraxlerB. VossP. WieczorekV. AbazovG. D. AlexeevM. Yu. BarabanovV.Kh. DodokhovA. EfremovA. FechtchenkoA. GaloyanG. GolovanovE. K. KoshurnikovYu. Yu. LobanovA. OlshevskiyA. A. PiskunA. G. SamartsevS. ShimanskiN. B. SkachkovA. N. SkachkovaE. A. StrokovskyV. V. TokmeninV. UzhinskyA. VerkheevA.S. VodopianovN. I. ZhuravlevD. P. WattsM. BöhmW. EyrichA. LehmannD. MiehlingM. PfaffingerK. K. SethTing XiaoA. AliA. HamdiM. HimmelreichM. KrebsS. NakhoulF. NerlingP. GianottiV. LucheriniG. BraccoS. BodenschatzK.-Th. BrinkmannL. BrückS. DiehlV. DormenevM. DürenT. ErlenC. HahnA. HayrapetyanJ. HofmannS. KegelF. KhalidI. KöseogluÁ. KripkóW. KühnV. MetagM. MoritzM. NanovaR. NovotnyP. OrsichJ. Pereira-de-LiraM. SachsM. A. SchmidtR. SchubertM. StrickertT. WasemH.-G. ZaunickE. Tomasi‐GustafssonD. I. GlazierD. G. IrelandB. SeitzR. KappertM. KavatsyukH. LoehnerJ. G. MesschendorpV. RodinK. KalitaG. S. HuangD. LiuH. PengH. R. QiYi SunX. ZhouM. KunzeK. AziziA. T. OlgunZ. TavukogluA. DerichsR. DosdallW. EsmailA. GillitzerF. GoldenbaumD. GrunwaldL. JokhovetsJ. KannikaP. KulessaS. OrfanitskiG. Pérez-AndradeD. PrasuhnE. PrencipeJ. PützJ. RitmanE. RosenthalS. SchadmandR. SchmitzA. SchollT. SefzickV. SerdyukT. StockmannsD. VeretennikovP. WintzP. WüstnerHao XuY. ZhouXu CaoQ. HuY. T. LiangV. RigatoL. IsakssonP. AchenbachO. CorellA. DenigM. O. DistlerM. HoekW. LauthH. LeithoffH. MerkelU. MüllerJ. PetersenJ. PochodzallaB. S. SchlimmeC. SfientiM. ThielS. BleserMichael BöltingL. CapozzaA. DbeyssiA. EhretR. KlasenR. KliemtF. E. MaasC. MotzkoO. NollD. Rodríguez PiñeiroF. SchuppM. SteinenS. WolffI. ZimmermannD. KazlouM. KorzhikO. MissevitchP. BalanutsaV. ChernetskyA. DemekhinA. DolgolenkoP. FedoretsA. GerasimovA. GolubevА. В. КанцыревD. Y. KirinN. KristiE. LadyginaE. LuschevskayaV. A. MatveevV. PanjushkinA. V. StavinskiyA. BalashoffA. BoukharovM. BukharovaO.B. MalyshevE. VishnevskyD. BonaventuraP. BrandB. HetzN. HüskenJ. KellersA. KhoukazD. KlostermannC. MannweilerS. VestrickD. BumrungkohC. HeroldK. KhosonthongkeeC. KobdajA. LimphiratK. ManasatitpongT. NasawadS. PongampaiTawanchat SimantathammakulP. SrisawadN. WongprachanukulY. YanC. X. YuXiaofeng ZhangW. J. ZhuE. AntokhinA. BarnyakovK. BeloborodovV. E. BlinovI.A. KuyanovS. PivovarovE. PyataYu. A. TikhonovA. E. BlinovS.A. KononovE. A. KravchenkoM. LatteryG. BocaD. DudaM. FingerM. FingerA. KvetonM. PešekM. PeskovaI. ProchazkaM. SluneckaM. VolfP. GallusV. JaryO. KorchakM. MarcisovskyG. NeueJ. NovyL. TomasekM. TomasekM. ViriusV. VrbaV. AbramovS. BukreevaS. ChernichenkoA. DerevschikovV. FerapontovY. GoncharenkoA. LevinE. MaslovaY. MelnikA. MeschaninN. MinaevВ. В. МочаловV. V. MoiseevD. MorozovL. V. NogachS. PoslavskiyA. RyazantsevS. RyzhikovP. SemenovI. SheinA. UzunianA. VasilievA. E. YakutinS. BelostotskiG. FedotovA. IzotovS. ManaenkovO. MiklukhoM. PrestonP.-E. TegnérD. WölbingB. CederwallK. GandhiAjay KumarS. GodreV. CredéS. DobbsP. EugenioD. CalvoP. De RemigisA. FilippiG. MazzaR. WheadonF. IazziA. LavagnoM. P. BussaS. SpataroArifa AkramH. CalenW. Ikegami AnderssonT. JohanssonA. KupśćP. MarciniewskiM. PapenbrockJenny ReginaJ. RiegerK. SchönningM. WolkeA. ChłopikG. KȩsikD. MelnychukJacek TarasiukS. WronkaB. ZwieglinskiC. AmslerP. BühlerJ. MártonS. Zimmermann
6
Citation
35
Reference
10
Related Paper
Citation Trend
Abstract:
The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards $N^*$ and $\Delta$ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the $N^*$ and $\Delta$ spectra. The future antiproton experiment PANDA will provide direct access to final states containing a $\bar{\Xi}\Xi$ pair, for which production cross sections up to $\mu$b are expected in $\bar{p}p$ reactions. With a luminosity of $L=10^{31}\,cm^{-2}s^{-1}$ in the first phase of the experiment, the expected cross sections correspond to a production rate of $\sim 10^6$ events$/$day. With a nearly $4\pi$ detector acceptance, PANDA will thus be a hyperon factory. In this study, reactions of the type $\bar{p}p\rightarrow \bar{\Xi}^+ \Xi^{*-}$ as well as $\bar{p}p\rightarrow \bar{\Xi}^{*+} \Xi^{-}$ with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between $3\,\%$ and $5\,\%$. This allows high statistics data to be collected within a few weeks of data taking.Keywords:
Bar (unit)
We investigate the hyperon semileptonic decay constants, $f_2/f_1$, and $g_1/f_1$, within a general framework of a chiral soliton model. All relevant parameters for the SU(3) baryon wave functions were unambiguously determined by using the experimental data for the masses of the baryon octet and the decuplet. Using then the existing experimental data for the magnetic moments of the baryon octet and the decay constants of hyperon semileptonic decays, we are able to determine all the hyperon semileptonic decay constants $f_2/f_1$ and $g_1/f_1$ of the baryon octet unequivocally. In addition, we also present the results of the axial-vector transition constants from the baryon decuplet to the octet.
Octet
Semileptonic decay
Cite
Citations (37)
Cite
Citations (4)
Sigma
Cite
Citations (0)
Hyperons provide a unique avenue to study the strong interaction. Due to their limited lifetime, the hyperon production in e +e − collisions is a new viable way to obtain information to understand the hyperon structure and internal dynamics, and even insight into the nature of the charmonium(-like) states. With the unique data sets obtained by the BESIII experiment, the recent results for the hyperon pair production in e +e − collisions are presented, such as observation of ψ(3686) → Ξ(1530)−Ξ(1530) ¯ +, determination of the Ω − spin, observation of the Ξ hyperon polarization, study of threshold effect in the sector of Ξ hyperon, search for Y (4230/4260) → Ξ −Ξ¯+ and so on.
Cite
Citations (6)
A dynamical model based on broken unitary symmetry is developed for nonleptonic decays of hyperons. The contributions to these decays are taken from the primary current-current interaction and from poles due to the baryons, the $K$ meson, ${{Y}_{0}}^{*}(1405)$, and the decuplet of baryon resonances (${{B}_{10}}^{*}$). The contributions from the baryon and $K$-meson poles are calculated on the assumption that weak baryon-baryon and $K\ensuremath{-}\ensuremath{\pi}$ transitions transform like divergences of the relevant weak currents, which are members of octets. The contributions from poles due to ${{Y}_{0}}^{*}$ and the ${{B}_{10}}^{*}$ resonances must be included to explain the $p$-wave amplitudes. Both $s$- and $p$-wave amplitudes then satisfy the triangular relations and fit the experimental values for the signs and magnitudes. The model predicts the correct sign of the ${{K}_{2}}^{0}\ensuremath{-}{{K}_{1}}^{0}$ mass difference.
Octet
Cite
Citations (6)
The effect of hyperon isospin interaction on the transition density of hyperon stars was studied by means of relativistic mean field theory for the baryon octet {n,p,Λ,Σ-,Σ0,Σ+,Ξ-,Ξ0} system.The results show that,considering the hyperon isospin interaction,the transition density of hyperon stars gradually decreased when xρΣ=2,1,2/3.When baryonic density was the transition density of hyperon stars,the Λ and Ξ-hyperons make the most contribution to the transition density of hyperon stars,Λ and Ξ-hyperon populations nearly amount to 80% of the total hyperon populations,the particle populations of Ξ-decreased as xρΣ reduced,Λ hyperon populations were 34.2%,35.8% and 33.8% of the total hyperon populations as xρΣ=2,1,2/3,respectively.
Octet
Cite
Citations (0)
Cite
Citations (18)
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, results for the hyperon-nucleon and hyperon-hyperon interactions as well as for strangeness S = −3 to −4 baryon-baryon systems, obtained to leading order are discussed. Preliminary results for the hyperon-nucleon interaction to next-to-leading order are presented.
Effective field theory
Baryon number
Cite
Citations (3)
The role of the decuplet particle poles in a baryon pole model for the parity-violating amplitude is investigated from the algebraic point of view. The conditions under which the baryon pole model, with decuplet poles, reproduces the results of the ${K}^{*}$ pole model and of current algebra are analyzed.
Parity (physics)
Cite
Citations (3)
Only a fraction of all $\Lambda$ and $\bar{\Lambda}$ hyperons detected in heavy ion collisions are produced from the hot and dense matter directly at the hadronization. These hyperons are called the {\em primary} hyperons. The rest of the hyperons are products of the decays of heavier hyperon states, which in turn are produced at the hadronization. As such, the polarization of only primary hyperons can be described with the formulae introduced in Sect. 8. For the rest of the hyperons, the polarization transfer in the decays has to be computed, and convoluted with the polarization of the mother hyperon. In this chapter, a derivation of the polarization transfer coefficients, as well as the computation of the mean polarization of all $\Lambda$ hyperons detected in the experiment, is presented. The chapter is concluded with the calculation of the resonance contributions to the global and local $\Lambda$ polarizations.
Hadronization
Cite
Citations (0)