Copper Ions Induce DNA Sequence Variation in Zygotic Embryo Culture-Derived Barley Regenerants
12
Citation
97
Reference
10
Related Paper
Citation Trend
Abstract:
In vitro tissue culture could be exploited to study cellular mechanisms that induce sequence variation. Altering the metal ion composition of tissue culture medium affects biochemical pathways involved in tissue culture-induced variation. Copper ions are involved in the mitochondrial respiratory chain and Yang cycle. Copper ions may participate in oxidative mutations, which may contribute to DNA sequence variation. Silver ions compete with copper ions to bind to the complex IV subunit of the respiratory chain, thus affecting the Yang cycle and DNA methylation. The mechanisms underlying somaclonal variation are unknown. In this study, we evaluated embryo-derived barley regenerants obtained from a single double-haploid plant via embryo culture under varying copper and silver ion concentrations and different durations of in vitro culture. Morphological variation among regenerants and the donor plant was not evaluated. Methylation-sensitive Amplified Fragment Length Polymorphism analysis of DNA samples showed DNA methylation pattern variation in CG and CHG (H = A, C, or T) sequence contexts. Furthermore, modification of in vitro culture conditions explained DNA sequence variation, demethylation, and de novo methylation in the CHG context, as indicated by analysis of variance. Linear regression indicated that DNA sequence variation was related to de novo DNA methylation in the CHG context. Mediation analysis showed the role of copper ions as a mediator of sequence variation in the CHG context. No other contexts showed a significant sequence variation in mediation analysis. Silver ions did not act as a mediator between any methylation contexts and sequence variation. Thus, incorporating copper ions in the induction medium should be treated with caution.Keywords:
Somaclonal variation
DNA demethylation
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. We characterized the spatiotemporal expression patterns of genes involved in de novo methylation, methyl maintenance, and active demethylation in roots, shoots, and reproductive organs using β-glucuronidase (GUS) reporter lines. Promoters of DNA demethylases were generally more highly active at the mature root tissues, whereas the promoters of genes involved in DNA methylation were more highly active at fast-growing root tissues. The promoter activity also implies that methylation status in shoot apex, leaf primordia, floral organs, and developing embryos is under tight equilibrium through the activity of genes involved in DNA methylation and demethylation. The promoter activity of DNA methylation and demethylation-related genes in response to various phytohormone treatments revealed that phytohormones can alter DNA methylation status in specific and redundant ways. Overall, our results illustrate that DNA methylation and demethylation pathways act synergistically and antagonistically in various tissues and in response to phytohormone treatments and point to the existence of hormone-linked methylome regulation mechanisms that may contribute to tissue differentiation and development.
DNA demethylation
Demethylation
Cite
Citations (15)
A new noninvasive screening tool for colorectal neoplasia detects epigenetic alterations exhibited by gastrointestinal tumor cells shed into stool. There is insufficient existing data to determine temporal associations between colorectal cancer (CRC) progression and aberrant DNA methylation. To evaluate the feasibility of using fecal DNA methylation status to determine CRC progression, we collected stool samples from 14 male SD rats aged six weeks, and administered subcutaneous injections of either 1,2-dimethylhydrazine or saline weekly. p16 DNA methylation statuses in tumorous and normal colon tissue, and from stool samples were determined using methylation-specific PCR. Additionally, p16 methylation was detected in stool DNA from 85.7% of the CRC rats. The earliest change in p16 methylation status in the DMH-treated group stool samples occurred during week nine; repeatabilities were 57.1% in week 19 (p = 0.070) and 85.7% in week 34 (p = 0.005). A temporal correlation was evidenced between progression of CRC and p16 methylation status, as evidenced by DMH-induced rat feces. Using fecal DNA methylation status to determine colorectal tissue methylation status can reveal CRC progression. Our data suggests that p16 promoter methylation is a feasible epigenetic marker for the detection and may be useful for CRC screening.
Cite
Citations (2)
DNA methylation measured in white blood cell DNA is increasingly being used as in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran), and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources (WBC, Gran, mononuclear (MN), and lymphoblastoid cell lines (LCL)), we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA), and [3H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LBC, MN, or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [3H]-methyl acceptance, LINE1, and Alu assays. Methylation in MN was correlated with methylation in WBC for the [3H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant positive correlations ranging from 0.3-0.7 for each cell type with one exception (Sat2 and Alu in MN). . Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39-0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18-0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.
White blood cell
Cite
Citations (134)
Demethylation
Cite
Citations (12)
CpG site
Differentially methylated regions
Cite
Citations (43)
DNA methylation is a dynamic epigenetic modification with an important role in cell fate specification and reprogramming. The Ten eleven translocation (Tet) family of enzymes converts 5-methylcytosine to 5-hydroxymethylcytosine, which promotes passive DNA demethylation and functions as an intermediate in an active DNA demethylation process. Tet1/Tet2 double-knockout mice are characterized by developmental defects and epigenetic instability, suggesting a requirement for Tet-mediated DNA demethylation for the proper regulation of gene expression during differentiation. Here, we used whole-genome bisulfite and transcriptome sequencing to characterize the underlying mechanisms. Our results uncover the hypermethylation of DNA methylation canyons as the genomic key feature of Tet1/Tet2 double-knockout mouse embryonic fibroblasts. Canyon hypermethylation coincided with disturbed regulation of associated genes, suggesting a mechanistic explanation for the observed Tet-dependent differentiation defects. Based on these results, we propose an important regulatory role of Tet-dependent DNA demethylation for the maintenance of DNA methylation canyons, which prevents invasive DNA methylation and allows functional regulation of canyon-associated genes.
DNA demethylation
Reprogramming
5-Hydroxymethylcytosine
Epigenomics
Epigenome
5-Methylcytosine
Cite
Citations (58)
Age is a key risk factor for breast cancer and epigenetic alterations may contribute to age-related increases in breast cancer risk, though the relation of age-related methylation in normal breast tissues with altered methylation in breast tumors is unclear. We investigated the relation of age with DNA methylation in normal breast tissues genome-wide using two data sets from the Gene Expression Omnibus (GEO) database (GSE32393 and GSE31979). We validated our observations in an independent set of normal breast tissues, examined age-related methylation in normal breast for enrichment of genomic features, and compared age-related methylation in normal tissue with methylation alterations in breast tumors. Between the two array-based methylation data sets, there were 204 CpG loci with significant (P < 0.05) and consistent age-related methylation, 97% of which were increases in methylation. Our validation sets confirmed the direction of age-related DNA methylation changes in all measured regions. Among the 204 age-related CpG loci, we observed a significant enrichment for CpG islands (P = 8.7E-6) and polycomb group protein target genes (P = 0.03). In addition, 24 of the 204 CpGs with age-related methylation in normal breast were significantly differentially methylated between normal and breast tumor tissues. We identified consistent age-related methylation changes in normal breast tissue that are further altered in breast tumors and may represent early events contributing to breast carcinogenesis. This work identifies age-related methylation in normal breast tissue and begins to deconstruct the contribution of aging to epigenetic alterations present in breast tumors.
CpG site
Cite
Citations (64)
DNA promoter methylation of tumor suppressor genes and global DNA hypomethylation are common features of head and neck cancers. Our goal was to identify early DNA methylation changes in oral premalignant lesions (OPL) that may serve as predictive markers of developing oral squamous cell carcinoma (OSCC). Using high-throughput DNA methylation profiles of 24 OPLs, we found that the top 86 genes differentially methylated between patients who did or did not develop OSCC were simultaneously hypermethylated, suggesting that a CpG island methylation phenotype may occur early during OSCC development. The vast majority of the 86 genes were nonmethylated in normal tissues and hypermethylated in OSCC versus normal mucosa. We used pyrosequencing in a validation cohort of 44 patients to evaluate the degree of methylation of AGTR1, FOXI2, and PENK promoters CpG sites that were included in the top 86 genes and of LINE1 repetitive element methylation, a surrogate of global DNA methylation. A methylation index was developed by averaging the percent methylation of AGTR1, FOXI2, and PENK promoters; patients with a high methylation index had a worse oral cancer-free survival (P = 0.0030). On the other hand, patients with low levels of LINE1 methylation had a significantly worse oral cancer-free survival (P = 0.0153). In conclusion, AGTR1, FOXI2, and PENK promoter methylation and LINE1 hypomethylation may be associated with an increased risk of OSCC development in patients with OPLs.
CpG site
Bisulfite sequencing
Pyrosequencing
Cite
Citations (70)
DNA methylation is a well-characterized epigenetic modification that plays an important role in the regulation of gene expression. There is growing evidence on the involvement of epigenetic mechanisms in disease onset, including cancer. Environmental factors seem to induce changes in DNA methylation affecting human health. However, little is known about basal methylation levels in healthy people and about the correlation between environmental factors and different methylation profiles. We investigated the effect of seasonality on basal methylation by testing methylation levels in the long interspersed nucleotide element-1 (LINE-1) and in two cancer-related genes (RASSF1A and MGMT) of 88 healthy male heavy smokers involved in an Italian randomized study; at enrolment the subjects donated a blood sample collected in different months. Methylation analyses were performed by pyrosequencing. Mean methylation percentage was higher in spring and summer for the LINE1, RASSF1A and MGMT genes (68.26%, 2.35%, and 9.52% respectively) compared with autumn and winter (67.43%, 2.17%, and 8.60% respectively). In particular, LINE-1 was significantly hypomethylated (p = 0.04 or 0.05 depending on the CpG island involved) in autumn and winter compared with spring and summer. Seasonality seems to be a modifier of methylation levels and this observation should be taken into account in future analyses.
CpG site
Seasonality
Pyrosequencing
Basal (medicine)
Cite
Citations (31)