HIV-Infected Macrophages Are Infected and Killed by the Interferon-Sensitive Rhabdovirus MG1
Teslin S. SandstromNischal RanganathStephanie C. Burke SchinkelSyim SalahuddinOussama MézianeSandra CôtéCecilia T. CostiniukMohammad‐Ali JenabianJonathan B. Angel
2
Citation
66
Reference
10
Related Paper
Citation Trend
Abstract:
The use of unique cell surface markers to target and eradicate HIV-infected cells has been a longstanding objective of HIV-1 cure research. This approach, however, overlooks the possibility that intracellular changes present within HIV-infected cells may serve as valuable therapeutic targets. For example, the identification of dysregulated antiviral signaling in cancer has led to the characterization of oncolytic viruses capable of preferentially killing cancer cells. Since impairment of cellular antiviral machinery has been proposed as a mechanism by which HIV-1 evades immune clearance, we hypothesized that HIV-infected macrophages (an important viral reservoir in vivo) would be preferentially killed by the interferon-sensitive oncolytic Maraba virus MG1. We first showed that HIV-infected monocyte-derived macrophages (MDM) were more susceptible to MG1 infection and killing than HIV-uninfected cells. As MG1 is highly sensitive to type I interferons (IFN-I), we then investigated whether we could identify IFN-I signaling differences between HIV-infected and uninfected MDM and found evidence of impaired IFN-α responsiveness within HIV-infected cells. Finally, to assess whether MG1 could target a relevant, primary cell reservoir of HIV-1, we investigated its effects in alveolar macrophages (AM) obtained from effectively treated individuals living with HIV-1. As observed with in vitro-infected MDM, we found that HIV-infected AM were preferentially eliminated by MG1. In summary, the oncolytic rhabdovirus MG1 appears to preferentially target and kill HIV-infected cells via impairment of antiviral signaling pathways and may therefore provide a novel approach to an HIV-1 cure.IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. Cure research has also focused on only one cellular target of HIV-1 (the CD4+ T cell) while largely overlooking others (such as macrophages) that contribute to HIV-1 persistence. In this study, we address these challenges by describing a potential strategy for the eradication of HIV-infected macrophages. Specifically, we show that an engineered rhabdovirus-initially developed as a cancer therapy-is capable of preferential infection and killing of HIV-infected macrophages, possibly via the same altered antiviral signaling seen in cancer cells. As this rhabdovirus is currently being explored in phase I/II clinical trials, there is potential for this approach to be readily adapted for use within the HIV-1 cure field.Keywords:
Interferon type I
Innate immune responses against viral infection, especially the induction of type I interferon, are critical for limiting the replication of the virus. Although it has been shown that DNA can induce type I interferon, to date no natural DNA ligand of a virus that induces type I interferon has been described. Here we screened the genome of murine gammaherpesvirus 68 with mutations at various genomic locations to map the region of DNA that induces type I interferon. A repetitive region termed the 100-base-pair repeat region is a ligand that is both necessary and sufficient for the viral genomic DNA to induce type I interferon. A region colinear with this ligand in the genome of Kaposi's sarcoma-associated herpesvirus also induces type I interferon. We have thus defined a repetitive region of the genomes of gammaherpesviruses as the first natural DNA virus ligand that induces type I interferon.
Interferon type I
genomic DNA
Cite
Citations (16)
Research on interferon progressed very much during the last years, especially studies on the gamma type of interferon. Historical data about the research conducted on the gamma interferon, its inductors, its physical, chemical and biological properties, the methods of preparation and purification, as well as the perspective of therapeutical utilisation of this type of interferon, in spite of some reversible side effects, are presented and discussed.
Cite
Citations (0)
Infectious prions comprising abnormal prion protein, which is produced by structural conversion of normal prion protein, are responsible for transmissible spongiform encephalopathies including Creutzfeldt-Jakob disease in humans. Prions are infectious agents that do not possess a genome and the pathogenic protein was not thought to evoke any immune response. Although we previously reported that interferon regulatory factor 3 (IRF3) was likely to be involved in the pathogenesis of prion diseases, suggesting the protective role of host innate immune responses mediated by IRF3 signalling, this remained to be clarified. Here, we investigated the reciprocal interactions of type I interferon evoked by IRF3 activation and prion infection and found that infecting prions cause the suppression of endogenous interferon expression. Conversely, treatment with recombinant interferons in an ex vivo model was able to inhibit prion infection. In addition, cells and mice deficient in type I interferon receptor (subunit interferon alpha/beta receptor 1), exhibited higher susceptibility to 22L-prion infection. Moreover, in in vivo and ex vivo prion-infected models, treatment with RO8191, a selective type I interferon receptor agonist, inhibited prion invasion and prolonged the survival period of infected mice. Taken together, these data indicated that the interferon signalling interferes with prion propagation and some interferon-stimulated genes might play protective roles in the brain. These findings may allow for the development of new strategies to combat fatal diseases.
IRF3
Interferon type I
Ex vivo
Pathogenesis
Cite
Citations (27)
Porcine reproductive and respiratory syndrome virus (PRRSV) is not only a poor inducer of type I interferon but also inhibits the efficient induction of type I interferon by porcine transmissible gastroenteritis virus (TGEV) and synthetic dsRNA molecules, Poly I:C. However, the mechanistic basis by which PRRSV interferes with the induction of type I interferon in its natural host cells remains less well defined. The purposes of this review are to summarize the key findings in supporting the post-transcriptional control of type I interferon in its natural host cells and to propose the possible role of translational control in the regulation of type I interferon induction by PRRSV.
Interferon type I
Cite
Citations (12)
MDA5
Interferon type I
Wild type
Cite
Citations (543)
Despite early reports to the contrary, there is increasing evidence that patients with severe COVID-19 have a robust type I interferon response, which contrasts with the delayed, possibly suppressed, interferon response seen early in infection. A robust type I interferon response could exacerbate hyperinflammation in the progression to severe COVID-19 through diverse mechanisms. Further understanding of the roles of type I interferon at different stages of infection and in patients with mild versus severe COVID-19 will provide insights for the therapeutic use of interferon administration or JAK inhibitors in patients with COVID-19. In this Comment, Jeong Seok Lee and Eui-Cheol Shin discuss contradictory results regarding the downregulation or upregulation of type I interferon responses in patients with COVID-19 and the implications for therapies that target this pathway.
Interferon type I
Cite
Citations (405)
Borna disease virus (BDV) is a neurotropic, negative-stranded RNA virus causing persistent infection and progressive neurological disorders in a wide range of warm-blooded animals. The role of the small non-structural X protein in viral pathogenesis is not completely understood. Here we investigated whether the X protein of BDV and avian bornavirus (ABV) interferes with the type I interferon (IFN) system, similar to other non-structural proteins of negative-stranded RNA viruses. In luciferase reporter assays, we found that the X protein of various bornaviruses interfered with the type I IFN system at all checkpoints investigated, in contrast to previously reported findings, resulting in reduced type I IFN secretion.
Interferon type I
Pathogenesis
Cite
Citations (17)
Interferon-induced gene expression was analyzed in wild-type and interferon-resistant Daudi cells. Two classes of alpha-interferon-induced mRNAs and proteins were observed: those that were similarly induced in both types of cell and those that were induced only in the wild-type cells. Furthermore, the level of c-myc mRNA decreased in the wild-type but not in the resistant cells. This differential control in the wild-type and resistant cells indicates that there must be either functionally distinct alpha-interferon receptors or more than one pathway leading to altered gene expression triggered by a single receptor.
Interferon type I
Lymphoblast
Wild type
Cell type
Interferon-stimulated gene
Interferon alfa
Cite
Citations (86)
Signaling through toll-like receptors (TLRs) is essential for dendritic cell (DC) maturation induced by bacteria and other pathogens. The mechanism for virus-induced DC maturation is not known. By use of pairs of live viruses with different abilities to induce the interferon (IFN) pathway, a strong correlation between DC maturation and the ability of the virus to induce type I IFN synthesis was demonstrated. The secreted IFN was not necessary, nor was it sufficient to induce full DC maturation. Intracellular viral replication is necessary for this process, and the transcription factor nuclear factor–κB was crucial for cytokine induction. The double-stranded RNA–dependent protein kinase was not essential for DC maturation. Similar to TLR-induced DC maturation, after virus infection, separate pathways for the induction of cytokine secretion and the up-regulation of major histocompatibility complex and costimulatory molecules were activated. It was demonstrated that these pathways have different sensitivities to the presence of viral stimulus
Interferon type I
Cite
Citations (110)
Plasmacytoid dendritic cell
Interferon type I
Interferon alfa
Cell type
Cite
Citations (27)