logo
    High throughput estimates of Wolbachia, Zika and chikungunya infection in Aedes aegypti by near-infrared spectroscopy to improve arbovirus surveillance
    20
    Citation
    68
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Deployment of Wolbachia to mitigate dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) transmission is ongoing in 12 countries. One way to assess the efficacy of Wolbachia releases is to determine invasion rates within the wild population of Aedes aegypti following their release. Herein we evaluated the accuracy, sensitivity and specificity of the Near Infrared Spectroscopy (NIRS) in estimating the time post death, ZIKV-, CHIKV-, and Wolbachia -infection in trapped dead female Ae. aegypti mosquitoes over a period of 7 days. Regardless of the infection type, time post-death of mosquitoes was accurately predicted into four categories (fresh, 1 day old, 2–4 days old and 5–7 days old). Overall accuracies of 93.2, 97 and 90.3% were observed when NIRS was used to detect ZIKV, CHIKV and Wolbachia in dead Ae. aegypti female mosquitoes indicating NIRS could be potentially applied as a rapid and cost-effective arbovirus surveillance tool. However, field data is required to demonstrate the full capacity of NIRS for detecting these infections under field conditions.
    Keywords:
    Zika Virus
    Over the last 50 years the Asian tiger mosquito Aedes (stegomyia) albopictus (Skuse) has spread to all continents in the old and new world. This anthropophilous species is able to adapt to most climates. Although long considered as a secondary disease vector, it has been shown to be competent for arbovirus transmission under laboratory conditions. In several locations that it has invaded, the tiger mosquito has played a major role in arbovirus transmission (dengue fever and chikungunya). A recent example is the outbreak of chikungunya on the Indian Ocean island of Reunion
    Aedes albopictus
    Disease Transmission
    Citations (9)
    The world is facing a new pandemic in progress due to a mosquito-borne flavivirus popularly known as Zika virus. The emergence of this new virus is really alarming with the sudden increment in the cases of microcephaly reported from Brazil. The findings attributing the involvement of Zika virus as the reason for congenital deformations in the babies born in afflicted areas have really shocked the world. The present knowledge about this virus is very limited and in the absence of further studies the precautions seems to be the best way of protection from this virus. The present article is a short review about this new virus.
    Zika Virus
    Microcephaly
    Arbovirus Infections
    Flavivirus
    Pandemic
    Abstract Background Chikungunya and Zika are both arboviruses transmitted through the Aedes mosquitoes, which are ectothermic, leading to seasonal outbreak patterns of virus infections in the human population. Mathematical models linked with mosquito trap data, human case data, or both, have proven to be powerful tools for understanding the transmission dynamics of arboviral diseases. However, while predictive models should consider a variety of features in the environment, vectors, and hosts, it is not clear which aspects are essential to assist with short-term forecasting. Methodology We consider four simple models with various assumptions, including mosquito dynamics, temperature impacts, or both, and apply each model to forecast the Chikungunya and Zika outbreaks of nine different regions in French Polynesia. We use standard statistical criteria to compare the accuracy of each model in predicting the magnitude of the outbreak to select the most appropriate model to use as an alert system for arbovirus infections. Moreover, by calibrating our “best model”, we estimate biologically meaningful parameter values to explore the commonality and difference between Chikungunya and Zika epidemics. Conclusions We show that incorporating the mosquito population dynamics in the arbovirus transmission model is essential for accurate arbovirus case prediction. In addition, such enhancement in the accuracy of prediction is more obvious for the Chikungunya data than the Zika data, suggesting that mosquito dynamics play a more important role in Chikungunya transmission than Zika transmission. In contrast, incorporating the effects of temperature may not be necessary for past outbreaks in French Polynesia. With the well-calibrated model, we observe that the Chikungunya virus has similar but slightly higher transmissibility than the Zika virus in most regions. The best-fit parameters for the mosquito model suggest that Chikungunya has a relatively longer mosquito infectious period and a higher mosquito-to-human transmission rate. Further, our findings suggest that universal vector control plans will help prevent future Zika outbreaks. In contrast, targeted control plans focusing on specific mosquito species could benefit the prevention of Chikungunya outbreaks.
    Zika Virus
    In the context of recent arbovirus epidemics, questions about the frequency of simultaneous infection of patients with different arbovirus species have been raised. In 2014, a major Chikungunya virus (CHIKV) epidemic impacted the Caribbean and South America. As part of ongoing screening of schoolchildren presenting with acute undifferentiated febrile illness in rural Haiti, we used RT-PCR to identify CHIKV infections in 82 of 100 children with this diagnosis during May—August 2014. Among these, eight were infected with a second arbovirus: six with Zika virus (ZIKV), one with Dengue virus serotype 2, and one with Mayaro virus (MAYV). These dual infections were only detected following culture of the specimen, suggesting low viral loads of the co-infecting species. Phylogenetic analyses indicated that the ZIKV and MAYV strains differ from those detected later in 2014 and 2015, respectively. Moreover, CHIKV and ZIKV strains from co-infected patients clustered monophyletically in their respective phylogeny, and clock calibration traced back the common ancestor of each clade to an overlapping timeframe of introduction of these arboviruses onto the island.
    Zika Virus
    Arbovirus Infections
    To assess the presence of Dengue, Chikungunya, and Zika in serum samples of patients with acute febrile illness in Piura, Peru and describe the most common clinical features. Dengue was the most common arbovirus detected in 170/496 (34.3%), followed by Zika in 39/496 (7.9%) and Chikungunya in 23/496 (4.6%). Among the 170 samples positive for Dengue, serotype 2 was the most predominant type present in 97/170 (57.1%) of samples, followed by the serotype 3 in 9/170 (5.3%). Headaches, muscle pain, and joint pain were the most common symptoms associated with fever in patients with Dengue and Zika. No symptoms predominance was observed in patients with Chikungunya.Dengue is considered the most frequent arbovirus in Peru and the number of cases has increased dramatically in the last 5 years. However, it is not the only arbovirus that circulates along the northern coast of Peru. It has also been determined the presence of Zika and Chikungunya in our population, which may suggest the circulation of other arboviruses that have not been detected.
    Zika Virus
    Citations (19)
    No grupo das doencas infecciosas emergentes e reemergentes, os arbovirus transmitidos por mosquitos, como dengue (DENV) e chikungunya (CHIKV), sao considerados importantes desafios para a saude publica. Alem do cenario causado pelo DENV, endemico em quase todo o pais e causando epidemias ha decadas, a introducao do CHIKV no territorio brasileiro traz grande preo-cupacao. Ambos sao transmitidos por mosquitos do genero
    Arbovirus Infections
    Citations (1)