Frequencies of Genetic Polymorphisms of Clinically Relevant Gene-Drug Pairs in a German Psychiatric Inpatient Population
16
Citation
45
Reference
10
Related Paper
Citation Trend
Abstract:
Genetic variation is known to affect enzymatic activities allowing differentiating various metabolizer types (e. g., slow or rapid metabolizers), in particular CYP2C19 and CYP2D6.PGx-testing was conducted in adult major depressive disorder inpatients admitted to the Vitos Klinik Eichberg between 11/2016 and 7/2017 (n=108, 57% female). We conducted a two-sided Z-Test (p=0.05) to analyze and compare frequencies of CYP2D6, CYP2C19, CYP3A4, CYP3A5 and CYP2C9 metabolizer groups with other European and psychiatric inpatient cohorts. The HLA-A and -B genes were also analyzed.Non-normal metabolizer status of CYP2D6 were present in 47%. More specifically, 35 % were intermediate, 7% poor and 4% ultra-rapid metabolizers. 68% were CYP2C19 non-normal metabolizers. 8% were ultra-rapid and 31% rapid metabolizers. Notably, only 13% were NM for CYP2C19 and NM for CYP2D6 (activity score of 1 or more). For CYP2C9 we found 16% to be intermediate metabolizers, 1.0% poor metabolizer. CYP3A4 and CYP3A5 genetic polymorphisms were present in 25% and 19% respectively. HLA-B TAG- SNPs for *15:01 was positive in 25 patients, showing the need for different Tag-SNPs in Caucasians. HLA-B *57:01 TAG-SNP was positive in 8% of the patients, HLA-A TAG-SNP for *31:01 in Caucasians was positive in 9%. Z-Test showed statistical significance for our results.Our results suggest that our psychiatric inpatients were enriched with genotypes consistent with non-normal drug metabolism compared to reference populations. We therefore conclude that pharmacogenetic testing should be implemented in clinical practice to guide drug therapy.Keywords:
SNP
In this study, the authors investigated the relationship between the metabolism of clomipramine (C) and the genotypes of cytochrome P450 (CYP) CYP2C19 and CYP2D6. Fifty-one Japanese patients (18 men and 33 women) were administered 10 to 250 mg/day of C by mouth and maintained on the same daily dose of C for at least 2 weeks to obtain steady-state concentrations. Plasma levels of C and its metabolites N-desmethylclomipramine (DC), 8-hydroxyclomipramine, and 8-hydroxy-N-desmethylclomipramine (HDC) were determined by high-performance liquid chromatography. The allele frequencies of CYP2C19*2, CYP2C19*3, CYP2D6*5, and CYP2D6*10 were 27.5%, 12.8%, 2.9%, and 43.1%, respectively. Subjects who were homozygous for mutated alleles of CYP2C19 showed approximately 75% higher concentrations of C corrected by dose and body weight compared with those who were homozygous for wild-type alleles. Also, subjects who were homozygous for mutated alleles of CYP2C19 showed an approximately 68% higher value of C/DC compared with those who were homozygous for wild-type alleles. No significant difference in the ratio of DC/HDC was observed between subjects who were homozygous for mutated alleles of CYP2D6 and those who were homozygous for wild-type alleles. These results suggest that genotyping CYP2C19 is useful for grossly predicting the risk of getting high plasma concentrations of C and the low individual capacity to demethylate C because there is marked interindividual variability within each genotype. However, the genotyping of CYP2D6 is not useful for predicting the individual capacity to hydroxylate DC.
Clomipramine
Wild type
Cite
Citations (40)
To search for the optimal dosage of phenytoin in patients with epilepsy based on the metabolic activities of CYP2C9 and CYP2C19 polymorphisms, a total of 169 patients receiving phenytoin treatment for more than 1 month were recruited. Phenytoin concentration, serum albumin, liver function tests, and renal function tests were measured. CYP2C9 and CYP2C19 polymorphisms were genotyped by PCR-RFLP analysis, and NONMEM models were built to evaluate factors that would affect phenytoin metabolism. Patients were divided into 5 groups according to genotyping results (G1 to G5). Compared with extensive metabolizers in both CYP2C9 and CYP2C19 (G1), the Vmax (mg/kg/d) was 8.29% and 36.96% lower in CYP2C19 poor metabolizers (G3) and CYP2C9 poor metabolizers (G4), respectively. For the patient who was identified as a poor metabolizer in both CYP2C19 and CYP2C9 (G5), the Vmax was 45.75% lower than that of G1. In respect to Km (mg/L), it was 15.09% higher in G3 and 27.36% higher in G4 compared with that in G1. The Km of G5 was 91.71% higher than that of G1. The results revealed that the CYP2C9 and CYP2C19 polymorphisms have dramatic effects on the population pharmacokinetic parameters of phenytoin, especially for CYP2C9. Based on the Vm and Km values obtained in this study, the recommended dose ranges for G1, G2, G3, G4, and G5 patients would be 5.5-7, 5-7, 5-6, 3-4, and 2-3 mg/kg/d, respectively.
Cite
Citations (112)
Hydroxylation
Cite
Citations (0)
Pharmacogenetics of acenocoumarol: CYP2C9 *2 and VKORC1 c.-1639G>A, 497C>G, 1173C>T, and 3730G>A variants influence drug dose in anticoagulated patients -
Acenocoumarol
VKORC1
Cite
Citations (8)
The present study is part of the genetic mapping of Indonesia focusing on drug metabolizing enzymes, which started with the Buginese population of Makassar, South Sulawesi. The two CYP450 gene subfamilies, i.e. CYP2C9 and CYP2C19 are of interest as they exhibit wide inter-individual variation in expression, which influence the drug metabolism capacity. The CYP2C9 alleles of interest in this study were CYP2C9*2 and *3, and of CYP2C19 was CYP2C19*17. The study aimed to determine the frequencies of the CYP2C9 genotype, which contains *1, *2 and *3 alleles, and the CYP2C19 genotype, which comprises the *1 and *17 alleles in the Buginese. Ninety six Buginese subjects, comprising 48 males and 48 females were studied. CYP2C9 and CYP2C19 alleles were detected by a PCR-RFLP assay method. Results showed that there was no CYP2C9*2 allele present, while the frequencies of CYP2C9*3 and CYP2C19*17 overall were 1.56 % and 4.68 %, respectively. The frequency of the CYP2C9*3 allele in females was 2.08%, and not statistically different from that in males (1.05%). The frequency of the CYP2C19*17 allele in females (8.33%), was significantly different (P<0.05) from that in males (1.05%). No subject carried the CYP2C9*2/*2, CYP2C9*3/*3, CYP2C19*17/*17, or CYP2C9*3/CYP2C19*17 genotype. The study is the first to describe the drug metabolizing enzyme polymorphisms, CYP2C9 and CYP2C19, in the Indonesian Buginese population. Keywords: Buginese, CYP2C9*2, CYP2C9*3, CYP2C19*17, Indonesia.
Cite
Citations (3)
Serum clomipramine and desmethylclomipramine levels in a CYP2C19 and CYP2D6 intermediate metabolizer
Pharmacogenetics within psychiatry has the potential to aid in the dose and selection of medications. A substantial number of psychiatric medications are metabolized through either of the highly polymorphic drug-metabolizing enzymes CYP2D6 and CYP2C19. Of these, clomipramine is subject to metabolism by both CYP2C19 and CYP2D6, leaving individuals with deficiencies of these drug-metabolizing enzymes at risk of higher concentrations of the parent molecule. Herein, we present the case of a 29-year-old male with diagnoses of depression and obsessive compulsive disorder who had trialed and failed a dozen psychiatric medications, many of which are subject to metabolism by CYP2D6 and/or CYP2C19, and had most recently been taking clomipramine for approximately 2.5 years. Pharmacogenetic testing revealed this patient to be an intermediate metabolizer for both CYP2C19 (*1/*2) and CYP2D6 (*4/*41), which resulted in considerably elevated serum trough concentrations of clomipramine and its active metabolite desmethylclomipramine. This case provides a retrospective view of how the knowledge of an individual's pharmacogenetic test results can aid in their clinical care.
Clomipramine
Cite
Citations (7)
Genetic polymorphism of cytochrome P450 2C9 (CYP2C9) and cytochrome P450 2C19 (CYP2C19) is widely known to contribute to interindividual differences in the pharmacokinetics of some antiepileptic drugs. We developed a rapid detection assay of polymorphisms of CYP2C9 and CYP2C19, using the Light Cycler® polymerase chain reaction (PCR) system. Using this assay, we examined polymorphisms in 20 Japanese pediatric patients prescribed phenytoin for the treatment of epilepsy, and classified their polymorphisms into four groups: group I, CYP2C9*1/*1 and CYP2C19*1/*1; group II, CYP2C9*1/*1 and CYP2C19*1/*2 or *1/*3; group III, CYP2C9*1/*1 and CYP2C19*2/*2; and group IV, CYP2C9*1/*3 and CYP2C19*1/*2 or *1/*3. The mean maximal elimination rates (Vmax) in groups I, II, III and IV were 13.1, 11.2, 10.2 and 8.0 mg/day/kg, respectively, with statistically significant differences among groups (p=0.012, Kruskal-Wallis analysis). The intrinsic metabolic activity (Vmax/Km) of groups I, II, III and IV were 2.9, 2.2, 1.5 and 1.1 l/day/kg, respectively (p=0.009), again with significant differences among groups. These findings indicate that polymorphism of CYP2C9 and CYP2C19 plays an important role in phenytoin metabolism in children. With a total processing time for this assay of less than 3 hours, prediction of the optimal phenytoin dosage based on the CYP2C9 and CYP2C19 genotypes will be possible before commencement of therapy, resulting in the prevention of phenytoin overdoses in pediatric patients with epilepsy.
Cite
Citations (7)
Abstract Purpose The antidepressant venlafaxine is largely O -desmethylated by CYP2D6, whereas CYP2C19 mediates an alternative metabolic route of venlafaxine through N -desmethylation. The aim of this study was to investigate the combined effect of genotype-predicted CYP2D6 and CYP2C19 phenotypes on serum concentrations of venlafaxine and metabolites in a large patient population. Methods Patients were retrospectively included from a therapeutic drug monitoring service at Diakonhjemmet Hospital in Oslo (Norway) between January 01, 2007, and December 31, 2017. The study population was divided into different phenotype subgroups according to the combinations of CYP2D6/CYP2C19 phenotypes; intermediate metabolizers (IMs), poor metabolizers (PMs) and ultrarapid metabolizers, and compared using combined normal metabolizers (NMs) as reference. Findings The dose-adjusted serum concentration of venlafaxine was 4- and 13-fold increased in combined CYP2D6 IM/CYP2C19 PMs and combined PMs, respectively, compared with combined NMs ( P < 0.001). The sum concentration of venlafaxine + ODV (pharmacological active moiety) was increased 1.9 and 3.6-fold, respectively, in the same phenotype groups. Furthermore, the dose-adjusted active moiety exposure was similar in combined IMs as combined CYP2D6 PM/CYP2C19 NMs. CYP2D6 and CYP2C19 phenotypes explained 46% of the interindividual variability in dose-adjusted venlafaxine serum concentrations, whereas CYP2D6 alone explained 24%. Conclusions The combined CYP2D6/CYP2C19 phenotype has a significant impact on serum concentrations of venlafaxine and also on the active moiety of venlafaxine + ODV, than CYP2D6 alone. In clinical practice, it is therefore important to take into account phenotype variabilities of both enzymes when assessing the risk of dose-dependent adverse effects during venlafaxine treatment.
Therapeutic Drug Monitoring
Cite
Citations (22)
Genetic testing may help to improve treatment outcomes in order to avoid non-response or severe side effects to psychotropic medication. Most robust data have been obtained for gene variants in CYP2D6 and CYP2C19 enzymes for antipsychotics and antidepressant treatment. We reviewed original articles indexed in PubMed from 2008–2013 on CYP2D6 and CYP2C19 gene variants and treatment outcome to antidepressant or antipsychotic medication. We have started providing CYP2D6 and CYP2C19 genotype information to physicians and conducted a survey where preliminary results are reported. Studies provided mixed results regarding the impact of CYP2D6 and CYP2C19 gene variation on treatment response. Plasma levels were mostly found associated with CYP metabolizer status. Higher occurrence/severity of side effects were reported in non-extensive CYP2D6 or CYP2C19 metabolizers. Results showed that providing genotypic information is feasible and generally well accepted by both patients and physicians. Although currently available studies are limited by small sample sizes and infrequent plasma drug level assessment, research to date indicates that CYP2D6 and CYP2C19 testing may be beneficial particularly for non-extensive metabolizing patients. In summary, clinical assessment of CYP2D6 and CYP2C19 metabolizer status is feasible, well accepted and optimizes drug treatment in psychiatry.
Pharmacogenomics
Cite
Citations (70)
Pharmacogenomics
SNP
Cite
Citations (50)