Activation of NLRP3 inflammasome up-regulates TREM-1 expression in murine macrophages via HMGB1 and IL-18
Wenjing ZhongJia‐Xi DuanTian LiuHui‐Hui YangXin‐Xin GuanChen‐Yu ZhangJintong YangJian‐Bing XiongYong ZhouCha‐Xiang GuanQing Li
11
Citation
39
Reference
10
Related Paper
Citation Trend
Keywords:
Pyrin domain
HMGB1
AIM2
Pyrin domain
AIM2
NALP3
NOD1
Cite
Citations (0)
Inflammasome is a cytosolic multiprotein complex to activate caspase-1 leading to the subsequent processing of inactive pro-interleukin-1-beta (Pro-IL-1β) into its active interleukin-1 beta (IL-1β) in response to pathogen- or dangerassociated molecular pattern. In recent years, a huge progress has been made to identify inflammasome component as a molecular platform to recruit and activate caspase-1. Nucleotide-binding oligomerization domain-like receptor (NLR) family proteins such as NLRP1, NLRP3 or interleukin-1β-converting enzyme (ICE)-protease activating factor (IPAF) have been first characterized to form inflammasome complex to induce caspase-1 activation. More recently, non-NLR type, pyrin-domain (PYD)-containing proteins such as pyrin or absent in melanoma2 (AIM2) were also proposed to form caspase-1-activating inflammasome machinery with apoptosis-associated speck-like protein containing a CARD (ASC), an essential adaptor molecule. Inflammasome pathways were shown to be crucial for protecting host organisms against diverse pathogen infections, but accumulating evidences also suggest that excessive activation of inflammasome/ caspase-1 might be related to the pathogenesis of inflammation-related diseases. Indeed, mutations in NLRP3 or pyrin are closely associated with autoinflammatory diseases such as familial Mediterranean fever (FMF) syndrome or Muckle-Wells syndrome (MWS), indicating that the regulation of caspase-1 activity by inflammasome is a central process in these hereditary inflammatory disorders. Here, recent advances on the molecular mechanism of caspase-1 activation by PYD-containing inflammasomes are summarized and discussed.
Pyrin domain
AIM2
NALP3
Cite
Citations (0)
Abstract Background Inflammation and cytokine release have been implicated in the pathogenesis of chronic heart failure (CHF). Of particular interest, Canakinumab, a monoclonal antibody against interleukin-1b (IL-1β), had provided benefit against cardiovascular events, suggesting that blockade of IL-1β secretion and signaling might be a promising new therapeutic target. Although, recent studies have provided evidence that inflammasome activation is the main contributor to IL-1β maturation, the role of inflammasome activation in CHF remains unknown. Objective Therefore, we aimed to assess inflammasome activation in myocardial samples from end-stage failing hearts. Methods Inflammasome activation was assessed by immunoblotting in left ventricular myocardial specimens harvested from patients with end-stage CHF. Furthermore, immunoblot measurements were also performed on translational animal models of CHF (e.g. rat models of permanent coronary artery ligation and transverse aortic constriction). Left ventricular monocyte and macrophage infiltration was detected by immunohistochemistry. To investigate the molecular background of inflammasome activation, a series of cell culture experiments were performed on AC16 human cardiomyocytes and THP-1 human monocytic cell lines. Results Out of the 4 major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human CHF while the NLRP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change. A similar expression pattern in AIM2 and NLRC4 was also noted in CHF animal models. Furthermore, robust infiltration of Iba1+ monocytes/macrophages was observed in human failing hearts as well as in different animal models of CHF. In vitro AIM2 inflammasome activation, as induced by transfection with double-stranded DNA [poly(deoxyadenylic-deoxythymidylic)] was reduced significantly by the pharmacological blockade of pannexin-1 channels. Conclusions AIM2 and NLRC4 inflammasome activation might contribute to chronic inflammation in CHF. Our findings suggest that pannexin-1 channels might be a promising novel target to reduce inflammasome activation. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): NVKP_16-1-2016-0017
Pyrin domain
AIM2
NLRC4
Pathogenesis
Cite
Citations (1)
Inflammasome is a cytosolic multiprotein complex to activate caspase-1 leading to the subsequent processing of inactive pro-interleukin-1-beta (Pro-IL-1β) into its active interleukin-1 beta (IL-1β) in response to pathogen- or danger-associated molecular pattern. In recent years, a huge progress has been made to identify inflammasome component as a molecular platform to recruit and activate caspase-1. Nucleotide-binding oligomerization domain-like receptor (NLR) family proteins such as NLRP1, NLRP3 or interleukin-1β-converting enzyme (ICE)-protease activating factor (IPAF) have been first characterized to form inflammasome complex to induce caspase-1 activation. More recently, non-NLR type, pyrin-domain (PYD)-containing proteins such as pyrin or absent in melanoma2 (AIM2) were also proposed to form caspase-1-activating inflammasome machinery with apoptosis-associated speck-like protein containing a CARD (ASC), an essential adaptor molecule. Inflammasome pathways were shown to be crucial for protecting host organisms against diverse pathogen infections, but accumulating evidences also suggest that excessive activation of inflammasome/caspase-1 might be related to the pathogenesis of inflammation-related diseases. Indeed, mutations in NLRP3 or pyrin are closely associated with autoinflammatory diseases such as familial Mediterranean fever (FMF) syndrome or Muckle-Wells syndrome (MWS), indicating that the regulation of caspase-1 activity by inflammasome is a central process in these hereditary inflammatory disorders. Here, recent advances on the molecular mechanism of caspase-1 activation by PYD-containing inflammasomes are summarized and discussed.
Pyrin domain
AIM2
NALP3
Cite
Citations (17)
Pyrin domain
AIM2
Cite
Citations (1)
Abstract Inflammasomes are protein platforms linking recognition of microbe, pathogen-associated and damage-associated molecular patterns by cytosolic sensory proteins to caspase-1 activation. Caspase-1 promotes pyroptotic cell death and the maturation and secretion of interleukin (IL)-1β and IL-18, which trigger inflammatory responses to clear infections and initiate wound-healing; however, excessive responses cause inflammatory disease. Inflammasome assembly requires the PYRIN domain (PYD)-containing adaptor ASC, and depends on PYD–PYD interactions. Here we show that the PYD-only protein POP2 inhibits inflammasome assembly by binding to ASC and interfering with the recruitment of ASC to upstream sensors, which prevents caspase-1 activation and cytokine release. POP2 also impairs macrophage priming by inhibiting the activation of non-canonical IκB kinase ɛ and IκBα, and consequently protects from excessive inflammation and acute shock in vivo . Our findings advance our understanding of the complex regulatory mechanisms that maintain a balanced inflammatory response and highlight important differences between individual POP members.
Pyrin domain
AIM2
Priming (agriculture)
IκB kinase
NALP3
Cite
Citations (54)
Pyrin domain
AIM2
NLRC4
Proinflammatory cytokine
Pyroptosis
Cite
Citations (6)
Canonical inflammasomes are innate immune protein scaffolds that enable the activation of inflammatory caspase-1, and subsequently the processing and release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death. Inflammasome assembly and activation occurs in response to sensing of infectious, sterile and self-derived molecular patterns by cytosolic pattern recognition receptors, including the Nod-like receptor NLRP3. While these responses are essential for host defense, excessive and uncontrolled NLRP3 inflammasome responses cause and contribute to a wide spectrum of inflammatory diseases, including gout. A key step in NLRP3 inflammasome assembly is the sequentially nucleated polymerization of Pyrin domain (PYD)- and caspase recruitment domain (CARD)-containing inflammasome components. NLRP3 triggers polymerization of the adaptor protein ASC through PYD-PYD interactions, but ASC polymerization then proceeds in a self-perpetuating manner and represents a point of no return, which culminates in the activation of caspase-1 by induced proximity. In humans, small PYD-only proteins (POPs) lacking an effector domain regulate this key process through competitive binding, but limited information exists on their physiological role during health and disease. Here we demonstrate that POP1 expression in macrophages is sufficient to dampen MSU crystal-mediated inflammatory responses in animal models of gout. Whether MSU crystals are administered into a subcutaneous airpouch or into the ankle joint, the presence of POP1 significantly reduces neutrophil infiltration. Also, airpouch exudates have much reduced IL-1β and ASC, which are typical pro-inflammatory indicators that can also be detected in synovial fluids of gout patients. Exogenous expression of POP1 in mouse and human macrophages also blocks MSU crystal-induced NLRP3 inflammasome assembly, resulting in reduced IL-1β and IL-18 secretion. Conversely, reduced POP1 expression in human macrophages enhances IL-1β secretion. We further determined that the mechanism for the POP1-mediated inhibition of NLRP3 inflammasome activation is through its interference with the crucial NLRP3 and ASC interaction within the inflammasome complex. Strikingly, administration of an engineered cell permeable version of POP1 was able to ameliorate MSU crystal-mediated inflammation in vivo, as measured by neutrophil infiltration. Overall, we demonstrate that POP1 may play a crucial role in regulating inflammatory responses in gout.
Pyrin domain
AIM2
NALP3
Pyroptosis
Proinflammatory cytokine
TRIF
Cite
Citations (11)
Pyroptosis
Pyrin domain
AIM2
Cite
Citations (2)
The NLR family, pyrin domain‐containing 3 (NLRP3) inflammasome is a multiprotein complex that induces caspase‐1 activation and the downstream substrates involved with the processing and secretion of the pro‐inflammatory cytokines interleukin‐1β (IL‐1β) and IL‐18 and tumor necrosis factor‐α (TNF‐ α). The NLRP3 inflammasome is activated by a wide range of danger signals that derive from metabolic dysregulation. Activation of this complex often involves the adaptor ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. It has been shown that nutraceuticals and medicinal plants have antiinflammatory properties and could be used as complementary therapy in the treatment of several chronic diseases that are related to inflammation, for example, cardiovascular diseases and diabetes mellitus. Herb‐based medicine has demonstrated protective effects against NLRP3 inflammasome activation. Therefore, this review focuses on the effects of nutraceuticals and bioactive compounds derived from medicinal plants on NLRP3 inflammasome activation and the possible mechanisms of action of these natural products. Thus, herb‐based, natural products/compounds can be considered novel, practical, and accessible agents in chronic inflammatory diseases by inhibiting NLRP3 inflammasome activation.
Pyrin domain
AIM2
Nutraceutical
NLRC4
Cite
Citations (31)