Exploring the Binding Mechanism and Accessible Angle of SARS-CoV-2 Spike and ACE2 by Molecular Dynamics Simulation and Free Energy Calculation
40
Citation
24
Reference
10
Related Paper
Citation Trend
Abstract:
The SARS-CoV-2 has caused more than 2,000 deaths as of 20 February 2020 worldwide but there is no approved effective drug. The SARS-CoV-2 spike (S) glycoprotein is a key drug target due to its indispensable function for viral infection and fusion with ACE2 as a receptor. To facilitate the drug discovery and development with S protein as drug target, various computational techniques were used in this study to evaluate the binding mechanisms between S protein and its acceptor ACE2. Impressively, SARS-CoV-2 S protein has higher affinity binding to ACE2 at two different “up” angles of RBD than SARS-CoV S protein to ACE2 at the same angles. The energy decomposition analysis showed that more interactions formed between SARS-CoV-2 S protein and ACE2, which may partially account for its higher infectiousness than SARS-CoV. In addition, we found that 52.2° is a starting accessible “up” angle of the BRD of SARS-CoV-2 S protein to bind ACE2, demonstrating that BRD is not necessary to be fully opened in order to bind ACE2. We hope that this work will be helpful for the design of effective SARS-CoV-2 S protein inhibitors to address the ongoing public health crisis.Keywords:
spike protein
Antiviral drug
spike protein
Cite
Citations (0)
Cite
Citations (3)
Antiviral drug
Drug Development
Cite
Citations (14)
Identification
Cite
Citations (78)
Toxicogenomics
Profiling (computer programming)
Biomarker Discovery
Cite
Citations (1)
Recent progresses in the development of fluorescent technologies become a reliable device for drug discovery research. The fluorescence tools offer attractive options for an opportunity to visualize the effects of drug candidates in the cells. The fluorescent tools, such as fluorescent protein, are regularly used in a range of drug discovery processes. A better understanding and use of fluorescent technologies facilitate drug discovery research faster and can open up new applications. Therefore, we have provided information about some new generation fluorescent reagents (GFP and fluorophores). This review illustrates how fluorescent technologies and fluorescent tools are contributing to the drug discovery process mainly high-throughput screening (HTS), disease mechanism based target discovery, disease-genes-based target discovery, 'target classes' based target candidate discovery, physiology-based drug discovery, genomics-based drug discovery, target validation and their future perspectives.
Drug Development
Cite
Citations (25)
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Cite
Citations (983)
The involvement of immunoglobulin (Ig) G3 in the humoral immune response to SARS-CoV-2 infection has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) in COVID-19. The exact molecular mechanism is unknown, but it is thought to involve this IgG subtype's differential ability to fix, complement and stimulate cytokine release. We examined the binding of convalescent patient antibodies to immobilized nucleocapsids and spike proteins by matrix-assisted laser desorption/ionization-time of flight (MALDI-ToF) mass spectrometry. IgG3 was a major immunoglobulin found in all samples. Differential analysis of the spectral signatures found for the nucleocapsid versus the spike protein demonstrated that the predominant humoral immune response to the nucleocapsid was IgG3, whilst for the spike protein it was IgG1. However, the spike protein displayed a strong affinity for IgG3 itself, as it would bind from control plasma samples, as well as from those previously infected with SARS-CoV-2, similar to the way protein G binds IgG1. Furthermore, detailed spectral analysis indicated that a mass shift consistent with hyper-glycosylation or glycation was a characteristic of the IgG3 captured by the spike protein.
spike protein
Sars virus
Cite
Citations (11)
In contrast to the wide applications of recombinant bifunctional fusion proteins in clinical usage, the systematic study for the pharmacokinetics (PK) of bifunctional fusion proteins is left blank. In this report, recombinant fusion proteins consisting of transferrin (Tf) and growth hormone (GH) or granulocyte colony-stimulating factor (G-CSF) have been constructed as a model for studying the PK of bifunctional fusion proteins. The results showed that the insertion of different linkers between the two protein domains altered the binding affinities of the fusion proteins to both domain receptors, and that the fusion proteins' plasma half-lives were greatly affected. A strong correlation between GH receptor binding affinity and plasma half-life of GH-Tf fusion proteins was observed. In addition, we demonstrated that the intracellular processing after receptor binding plays an important role in determining the half-life of fusion proteins. While the binding of the GH domain to the GH receptor will lead to endocytosis and lysosomal degradation in target cells, binding of the Tf domain to the Tf receptor may recycle the fusion protein and prolong its plasma half-life. To further confirm the effects of receptor binding on plasma half-life, G-CSF-Tf bifunctional fusion proteins with the same three linkers as GH-Tf were evaluated. While the 3 fusion proteins showed a similar G-CSF receptor binding affinity, the G-CSF-Tf fusion protein with the higher Tf receptor binding affinity exhibited longer plasma half-life. The linker insertion further demonstrated the involvement of Tf in recycling and prolonging plasma half-life. Based on our results, a model was developed to summarize the factors in determining the PK of bifunctional fusion proteins. Our findings are useful for predicting the plasma half-lives, as well as for improving the pharmacokinetic profiles of therapeutic bifunctional fusion proteins by applying linker technology.
Transferrin receptor
Cite
Citations (37)