Detrital Zircon U-Pb-Hf Isotopes of Middle Neoproterozoic Sedimentary Rocks in the Altyn Tagh Orogen, Southeastern Tarim: Insights for a Tarim-South China-North India Connection in the Periphery of Rodinia
10
Citation
60
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract The location of the Tarim craton during the assembly and breakup of the Rodinia supercontinent remains enigmatic, with some models advocating a Tarim-Australia connection and others a location at the heart of the unified Rodinia supercontinent between Australia and Laurentia. In this study, our new zircon U-Pb dating results suggest that middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen of the southeastern Tarim craton were deposited between ca. 880 and 760 Ma in a rifting-related setting slightly prior to the breakup of Rodinia at ca. 750 Ma. A compilation of existing Neoproterozoic geological records also indicates that the Altyn Tagh orogen of the southeastern Tarim craton underwent collision at ca. 1.0-0.9 Ga and rifting at ca. 850-600 Ma related to the assembly and breakup of Rodinia. Furthermore, in order to establish the paleoposition of the Tarim craton with respect to Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks were compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among rocks of the southeastern Tarim craton, Cathaysia, and North India but exclude a northern or western Australian affinity. In addition, detrital zircons from the northern Tarim craton exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, comparable to the northern and western Yangtze block. Together with comparable geological responses to the assembly and breakup of the Rodinia supercontinent, we offer a new perspective of the location of the Tarim craton between South China and North India in the periphery of Rodinia.Keywords:
Rodinia
Supercontinent
Laurentia
An interpretation of available paleomagnetic data from the Laurentia, Congo-Sao Francisco, Kalahari, and Amazonia cratons favors the hypothesis that these units were juxtaposed in a supercontinent by 1000 Ma. This supercontinent is similar to Hoffman's (1991) Rodinia, except for the Kalahari craton, whose 1300 to 1000 Ma Namaqua-Natal mobile belt is now juxtaposed against the correlated 1300 to 1000 Ma Grenville belt in eastern Laurentia, Our model suggests that a continuous 1300 to 1000 Ma orogenic belt, formed by the Grenville, Sunsas, Kibaride-Irumide-Lurio, Namaqua-Natal, and Dronning Maud Land-Coats Land belts, represents the suture zone between the Amazonia, Congo-Sao Francisco, Kalahari-Grunehogna, and Laurentia blocks. The formation of western Gondwana (from our Rodinia supercontinent) may be accomplished by the closure of the large Mozambique Ocean and the more restricted Adamastor Ocean, combined with some counterclockwise rotation of the Congo-Sao Francisco craton. Rotation of the Congo-Sao Francisco craton can explain the observed oblique convergence and wrench tectonics of Pan African-Brasiliano mobile belts that encircle this craton. The model is also consistent with the synchroneity between the Rodinia break-up and the assembly of Gondwana, as suggested by several authors (Laurentia began to separate from Rodinia at ∼625 Ma or later).
Rodinia
Supercontinent
Laurentia
Laurasia
Cite
Citations (36)
In the last decade, the participation of the Amazonian Craton on Precambrian supercontinents has been clarified thanks to a wealth of new paleomagnetic data. Paleo to Mesoproterozoic pale- omagnetic data favored that the Amazonian Craton joined the Co- lumbia supercontinent at 1780 Ma ago, in a scenario that resembled the South AMerica and BAltica (SAMBA) configuration. Then, the mismatch of paleomagnetic poles within the Craton implied that ei- ther dextral transcurrent movements occurred between Guiana and Brazil-Central Shield after 1400 Ma or internal rotation movements of the Amazonia-West African block took place between 1780 and 1400 Ma. The presently available late-Mesoproterozoic paleomagnetic data are compatible with two different scenarios for the Amazonian Craton in the Rodinia supercontinent. The first one involves an obli- que collision of the Amazonian Craton with Laurentia at 1200 Ma ago, starting at the present-day Texas location, followed by transcurrent mo- vements, until the final collision of the Amazonian Craton with Baltica at ca. 1000 Ma. The second one requires drifting of the Amazonian Craton and Baltica away from the other components of Columbia after 1260 Ma, followed by clockwise rotation and collision of these blocks with Laurentia along Grenvillian Belt at 1000 Ma. Finally, although the time Amazonian Craton collided with the Central African block is yet very disputed, the few late Neoproterozoic/Cambrian paleomagne- tic poles available for the Amazonian Craton, Laurentia and other West Gondwana blocks suggest that the Clymene Ocean separating these blocks has only closed at late Ediacaran to Cambrian times, after the Amazonian Craton rifted apart from Laurentia at ca. 570 Ma.
Rodinia
Supercontinent
Laurentia
Baltica
Cite
Citations (0)
Abstract In the paleogeographic configuration of the Neoproterozoic supercontinent of Rodinia, the Tarim craton (northwestern China), traditionally seen as a single block, is placed either on the periphery near northern Australia or India or in a central position between Australia and Laurentia. To distinguish between these possibilities, we present here new primary paleomagnetic results from ca. 900 Ma volcanics in the Aksu region of the northwestern Tarim craton. The data reveal a ~28° latitudinal difference between the North Tarim and South Tarim blocks at ca. 900 Ma and constrain the age of amalgamation of the Tarim craton to between 870 and 820 Ma. Combining paleomagnetic poles from Tarim and major cratons of Rodinia with geological evidence, a two-stage orogenic model is proposed for the assembly of Rodinia. Late Mesoproterozoic orogenesis (1.3–1.0 Ga) led to the assembly of Australia–East Antarctica, Baltica, Umkondia, South Tarim, and Cathaysia with Laurentia, forming the core of Rodinia. Thereafter, the Jiangnan–Central Tarim Ocean separating North Tarim and Yangtze from South Tarim and Cathaysia was closed before ca. 820 Ma. This second Jiangnan–Central Tarim orogeny caused nearly coeval amalgamation of the peripheral Tarim and South China cratons by the welding of North Tarim and Yangtze to South Tarim and Cathaysia, respectively. The supercontinent of Rodinia was thus assembled by two orogenic phases separated by ~200 m.y.
Rodinia
Supercontinent
Laurentia
Baltica
Orogeny
Cite
Citations (40)
ABSTRACT: In the last decade, the participation of the Amazonian Craton on Precambrian supercontinents has been clarified thanks to a wealth of new paleomagnetic data. Paleo to Mesoproterozoic paleomagnetic data favored that the Amazonian Craton joined the Columbia supercontinent at 1780 Ma ago, in a scenario that resembled the South AMerica and BAltica (SAMBA) configuration. Then, the mismatch of paleomagnetic poles within the Craton implied that either dextral transcurrent movements occurred between Guiana and Brazil-Central Shield after 1400 Ma or internal rotation movements of the Amazonia-West African block took place between 1780 and 1400 Ma. The presently available late-Mesoproterozoic paleomagnetic data are compatible with two different scenarios for the Amazonian Craton in the Rodinia supercontinent. The first one involves an oblique collision of the Amazonian Craton with Laurentia at 1200 Ma ago, starting at the present-day Texas location, followed by transcurrent movements, until the final collision of the Amazonian Craton with Baltica at ca. 1000 Ma. The second one requires drifting of the Amazonian Craton and Baltica away from the other components of Columbia after 1260 Ma, followed by clockwise rotation and collision of these blocks with Laurentia along Grenvillian Belt at 1000 Ma. Finally, although the time Amazonian Craton collided with the Central African block is yet very disputed, the few late Neoproterozoic/Cambrian paleomagnetic poles available for the Amazonian Craton, Laurentia and other West Gondwana blocks suggest that the Clymene Ocean separating these blocks has only closed at late Ediacaran to Cambrian times, after the Amazonian Craton rifted apart from Laurentia at ca. 570 Ma.
Rodinia
Laurentia
Supercontinent
Baltica
Cite
Citations (59)
The Amazonian craton major accretionary and collisional processes may be correlated to supercontinent assemblies developed at several times in the Earth history. Based on geologic, structural and paleomagnetic evidence paleocontinent reconstructions have been proposed for Archean to younger times. The oldest continent (Ur) was formed probably by five Achaean cratonic areas (Kaapvaal, Western Dhawar, Bhandara, Singhhum and Pilbara cratons). Geologic evidences suggest the participation of the Archaean rocks of the Carajás region in the Ur landmass. Supercontinental 2.45 Ga Kenorland amalgamation is indicated by paleomagnetic data including Laurentia, Baltica, Australia, and Kalahari and Kaapvaal cratons. There is no evidence indicating that Amazonian craton was part of the Kenorland supercontinent. From 1.83 Ga to 1.25 Ga Columbia and Hudsonland supercontinents including Amazonian craton were proposed based on NE portion of the Amazonian craton (Maroni/Itacaiunas province) connection with West Africa and Kalahari cratons. Rodinia supercontinent reconstructions show Amazonia joined to Laurentia-Baltica as result of 1.1 Ga to 1.0 Ga fusion based on the Sunsas-Aguapei belts and Greenville and Sveconorwegian belts, respectivelly. The large Late Mesoproterozoic landmass included also Siberia, East Antartica, West Nile, Kalahari, Congo/Sao Francisco and Greenland. The 750 - 520 Ma Gondwana assembly includes most of the continental fragments rifted apart during the break-up of Rodinia followed by diachronic collisions (Araguaia, Paraguay and Tucavaca belts). The supercontinent Pangea is comprised of Gondwana and Laurentia formed at about 300 - 180 Ma ago. The Amazonian craton margins probably were not envolved in the collisional processes during Pangea because it was embebed in Neoproterozoic materials. As consequence, Amazonian craton borders have no record of the orogenic processes responsible for the Pangea amalgamation.
Supercontinent
Rodinia
Laurentia
Baltica
Laurasia
Cite
Citations (11)
Three major East Asian crustal blocks, the Tarim, North China and South China Blocks, have records of the Neoproterozoic rifting events that broke up the supercontinent Rodinia. A preliminary tectonostratigraphic analysis suggests that the Tarim Block may have been adjacent to the Kimberley region, the South China Block between eastern Australia and Laurentia, and the North China Block adjacent to the northwestern corner of Laurentia and Siberia during the early Neoproterozoic. All three blocks were probably separated from the larger cratons towards the end of the Neoproterozoic but stayed close to the Australian margins of Gondwanaland from Cambrian until Devonian.
Rodinia
Supercontinent
Laurentia
Devonian
Cite
Citations (283)
Supercontinent
Laurentia
Rodinia
Baltica
Cite
Citations (0)
Rodinia
Laurentia
Supercontinent
Baltica
Cite
Citations (48)
Laurentia
Rodinia
Supercontinent
Apparent polar wander
Baltica
Cite
Citations (48)
Laurentia
Rodinia
Supercontinent
Baltica
Pangaea
Laurasia
Cite
Citations (262)