Stability of African Swine Fever Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV “Estonia 2014” Isolate
68
Citation
45
Reference
10
Related Paper
Citation Trend
Abstract:
Europe is currently experiencing a long-lasting African swine fever (ASF) epidemic, both in domestic pigs and wild boar. There is great concern that carcasses of infected wild boar may act as long-term virus reservoirs in the environment. We evaluated the tenacity of ASF virus (ASFV) in tissues and body fluids from experimentally infected domestic pigs and wild boar, which were stored on different matrices and at different temperatures. Samples were analysed at regular intervals for viral genome and infectious virus. ASFV was most stable in spleen or muscles stored at −20 °C and in blood stored at 4 °C. In bones stored at −20 °C, infectious virus was detected for up to three months, and at 4 °C for up to one month, while at room temperature (RT), no infectious virus could be recovered after one week. Skin stored at −20 °C, 4 °C and RT remained infectious for up to three, six and three months, respectively. In urine and faeces, no infectious virus was recovered after one week, irrespective of the matrix. In conclusion, tissues and organs from decomposing carcasses that persist in the environment for a long time can be a source of infection for several months, especially at low temperatures.Keywords:
Wild boar
Domestic pig
African Swine Fever
Classical swine fever
BOAR
African swine fever (ASF) is a severe viral disease characterized by high lethality in suids and caused by the African Swine Fever Virus (ASFV). The ASF genotype I virus was introduced to Europe in 1957, marking the onset of the first European epidemic wave. In 2007, ASFV genotype II was detected in Georgia, affecting domestic pigs and wild boars before spreading to various European and extra-European countries, including Italy. The first case of ASFV in Italy was documented on 7 January 2022, in a wild boar in the Piedmont region. Since then, several ASFV-positive wild boar carcasses have been identified in the Piedmont and Liguria regions. By June 2023, ASFV had spread to Lombardy, one of the major pig-producing regions in northern Italy; the virus was first detected in early summer in wild boar carcasses. Two months later, it was diagnosed in a commercial pig farm as a consequence of the disease’s spread amongst wild boars and an increase in the viral environmental load. This report aims to describe the features of ASFV domestic pig outbreaks that occurred in the Zinasco municipality (Lombardy) and the joint efforts to mitigate potential direct and indirect economic impacts on the Italian and global pig industry. The epidemiological investigation and the measures implemented, which were all performed according to national and European regulations, as well as exceptional ad hoc measures aimed at protecting the pig industry, are described in order to provide a practical and effective approach to combating ASF.
Wild boar
Domestic pig
African Swine Fever
Classical swine fever
Northern italy
Pig farming
Cite
Citations (0)
To the Editor: African swine fever (ASF) is a serious disease that is currently affecting domestic pigs and wild boars in the Russian Federation. The disease is caused by African swine fever virus (ASFV; family Asfarviridae), and its continuing spread imposes a growing risk for introduction to disease-free areas with a high density of pigs and/or wild boars. We recently reported on the experimental characterization of ASFV Caucasus isolates in European wild boar piglets and juveniles (1), age classes that were deemed to be the most susceptible to ASFV. The extreme virulence of the virus strain led to an almost peracute disease and 100% mortality. On the basis of these data, a scenario of endemicity driven by chronically diseased animals or ASFV carriers seems unlikely. Nevertheless, ASF continues to occur in wild boars.
Wild boar
African Swine Fever
Classical swine fever
Domestic pig
Cite
Citations (105)
After the extensive spread of the African swine fever virus (ASFV) genotype II in Eastern Europe, the first case of African swine fever (ASF) in Estonia was diagnosed in September 2014. By the end of 2019, 3971 ASFV-positive wild boars were found, and 27 domestic pig outbreaks were reported. A selection of ASFV isolates from wild boar and domestic pigs (during the period of September 2014–2019) was molecularly characterized using standardized genotyping procedures. One of the proven markers to characterize this virus is the central variable region (CVR) within the B602L gene. In summer 2015, a new ASFV genotype II CVR variant 2 (GII-CVR2) was confirmed in Estonia. The results suggest that the GII-CVR2 variant was only confirmed in wild boar from a limited area in southern Estonia in 2015 and 2016. In addition to GII-CVR2, a single nucleotide polymorphism (SNP) that resulted in amino acid change was identified within the genotype II CVR variant 1 (GII-CVR1). The GII-CVR1/SNP1 strain was isolated in Estonia in November 2016. Additional GII-CVR1/SNP1 cases were confirmed in two neighbouring counties, as well as in one outbreak farm in June 2017. Based on the available data, no GII-CVR2 and GII-CVR1/SNP1 have been reported by other affected European countries. The spread of variant strains in Estonia has been limited over time, and restricted to a relatively small area.
Wild boar
African Swine Fever
Domestic pig
Molecular Epidemiology
Cite
Citations (32)
African swine fever virus (ASFV) is spreading throughout Eurasia and there is no vaccine nor treatment available, so the control is based on the implementation of strict sanitary measures. These measures include depopulation of infected and in-contact animals and export restrictions, which can lead to important economic losses, making currently African swine fever (ASF) the greatest threat to the global swine industry. ASF has been endemic on the island of Sardinia since 1978, the longest persistence of anywhere in Eurasia. In Sardinia, eradication programs have failed, in large part due to the lack of farm professionalism, the high density of wild boar and the presence of non-registered domestic pigs (free-ranging pigs). In order to clarify how the virus is transmitted from domestic to wild swine, we examined the interaction between free-ranging pigs and wild boar in an ASF-endemic area of Sardinia. To this end, a field study was carried out on direct and indirect interactions, using monitoring by camera trapping in different areas and risk points. Critical time windows (CTWs) for the virus to survive in the environment (long window) and remain infectious (short window) were estimated, and based on these, the number of indirect interactions were determined. Free-ranging pigs indirectly interacted often with wild boar (long window = 6.47 interactions/day, short window = 1.31 interactions/day) and these interactions (long window) were mainly at water sources. They also directly interacted 0.37 times per day, especially between 14:00 and 21:00 h, which is much higher than for other interspecific interactions observed in Mediterranean scenarios. The highly frequent interactions at this interspecific interface may help explain the more than four-decade-long endemicity of ASF on the island. Supporting that free-ranging pigs can act as a bridge to transmit ASFV between wild boar and registered domestic pigs. This study contributes broadly to improving the knowledge on the estimation of frequencies of direct and indirect interactions between wild and free-ranging domestic swine. As well as supporting the importance of the analysis of interspecific interactions in shared infectious diseases, especially for guiding disease management. Finally, this work illustrates the power of the camera-trapping method for analyzing interspecific interfaces.
Wild boar
African Swine Fever
Domestic pig
Cite
Citations (51)
Basing on Polish experience of about 5 years (since the presence of the African swine fever (ASF) in this country, starting from February 17th, 2014) and in accordance with literature the importance of the disease in wild boar is charaterised. ASF belongs to the most dangerous, very contagious diseases occurring in domestic swine and wild boar in Eurasia. In Europe, including Russia, Ukraine, Belarus, Lithuania, Latvia, Estonia, Poland, Romania, Hungary, Bulgaria, Czech Republic and Belgium ASF is existing at present and was diagnosed for short time in the frame of the Eurasian pandemy. There is a serious concern of spreading of the virus of ASF (ASFV) to other countries of Europe, not only by wild boar. However the reservoir of ASFV in this animal is playing a very important role in the maintenance of the virus and infection of pigs. Long lasting existence of ASFV in the environmnent is connected with the very high resistance to antiviral environmental factors. Following the lack of an effective immunogenic vaccine against ASF the disease can only be controlled by administrative measures. Additionally the important and recommended procedure is the significant reduction of the wild boar population. Probability of eradication of ASFV from wild boar is increased after adding quick carcass removal simultaneously by respecting biosecurity rules. If effectively implemented, fencing is more useful to delineating zones rather than adding substantially to increased efficiency of ASF control. However, segments of fencing will be particularly usefull in theses areas, where carcasses removal or intensive hunting is difficult to implement.
Wild boar
African Swine Fever
Fencing
Biosecurity
Domestic pig
Cite
Citations (0)
Since the first introduction of African swine fever (ASF) into the European wild boar population in 1957, the question of virus survival in carcasses of animals that succumbed to the disease has been discussed. The causative African swine fever virus (ASFV) is known to be very stable in the environment. Thus, carcasses of infected wild boar could play a major role as ASFV reservoir and thereby help to locally maintain and spread the disease in wild boar populations. To minimize this risk, removal of wild boar carcasses in ASF affected areas is regarded to be crucial for effective disease control. If removal is not feasible, carcasses are usually disposed by burial on the spot to avoid direct contact of wild boar to the infection source. In this study, carcasses of ASFV infected wild boar buried in Lithuania at different time points and locations have been excavated and retested for the presence of infectious ASFV by in vitro assays and for viral genome by qPCR. Soil samples potentially contaminated by body fluids have been additionally tested for viral genome. In seventeen out of twenty burial sites, samples of excavated carcasses were positive for ASFV genome. However, in none of the carcass samples ASFV could be isolated. On seven sites soil samples contained ASF viral DNA. These results unexpectedly negate the long-term persistence of infectious ASFV in wild boar carcasses independent from the burial time. In this context, sensitivity of ASFV isolation from carcass samples versus susceptibility of animals and doses needed for oral inoculation has to be further investigated. Furthermore, research is required to consider alternative ASF infection sources and drivers in the infection cycle among wild boar.
Wild boar
African Swine Fever
BOAR
Cite
Citations (52)
A serological survey was carried out to establish the distribution of classical swine fever among wild boar in Sardinia, where that disease and African swine fever have been endemic in free-ranging domestic pigs and wild boar living in the mountainous areas of the province of Nuoro for several years. Blood samples were collected from 4752 wild boar shot during the period December 1988 to January 1992. An overall prevalence of 11 per cent was observed and the almost constant rate of about 9.8 per cent detected in the past three years indicates that the infection is well established. Wild boar seropositive to classical swine fever were found not only in the areas of the province of Nuoro where they share their habitat with free-ranging domestic pigs but also in other areas of the island where contacts between wild and domestic pigs are unlikely to occur. Therefore, transmission from wild boar to wild boar seems to play an important role in the spread and persistence of classical swine fever virus. In contrast, African swine fever virus is probably unable to persist in the wild boar population in the absence of the risk factor represented by their cohabitation with domestic free-ranging pigs infected with African swine fever.
Wild boar
Classical swine fever
African Swine Fever
Domestic pig
BOAR
Cite
Citations (104)
Wild boars are natural hosts for African swine fever (ASF). The ASF virus (ASFV) can persist for long periods in the environment, such as in ticks and contaminated products, which may be sources of infection for wild boar populations. African swine fever was eradicated in domestic pig populations in Spain in 1995, after 35 years of significant effort. To determine whether ASFV can persist in wild boar hosts after it has been eradicated from domestic pigs and to study the role of wild boar in helping ASFV persist in the environment, we checked for the presence of ASFV in wild boars in Doñana National Park, one of the largest natural habitats of wild boar in Spain and one of the last areas where ASF was endemic prior its eradication. Samples from 158 animals collected between 2006 and 2010 were analysed using serological and nucleic acid-based diagnostic techniques recommended by the World Organization for Animal Health (OIE). None of the samples was found to be positive. These results confirm the absence of disease in wildlife in what was once one of the areas most affected by ASF in Spain, and they suggest that wild boars play a limited role in ASFV persistence. These results confirm that ASFV cannot persist in isolated wild boar populations for long periods of time without the interaction of other factors such as re-infection by contact with domestic pigs or by feeding on contaminated swill.
Wild boar
African Swine Fever
Domestic pig
Cite
Citations (70)
Enzootic
Classical swine fever
Domestic pig
African Swine Fever
Cite
Citations (101)
Wild boar
Classical swine fever
African Swine Fever
Pestivirus
Cite
Citations (11)