logo
    Abstract:
    ACE2 (angiotensin-converting enzyme 2) is a key component of the renin-angiotensin-aldosterone system. Yet, little is known about the clinical and biologic correlates of circulating ACE2 levels in humans. We assessed the clinical and proteomic correlates of plasma (soluble) ACE2 protein levels in human heart failure. We measured plasma ACE2 using a modified aptamer assay among PHFS (Penn Heart Failure Study) participants (n=2248). We performed an association study of ACE2 against ≈5000 other plasma proteins measured with the SomaScan platform. Plasma ACE2 was not associated with ACE inhibitor and angiotensin-receptor blocker use. Plasma ACE2 was associated with older age, male sex, diabetes mellitus, a lower estimated glomerular filtration rate, worse New York Heart Association class, a history of coronary artery bypass surgery, and higher pro-BNP (pro-B-type natriuretic peptide) levels. Plasma ACE2 exhibited associations with 1011 other plasma proteins. In pathway overrepresentation analyses, top canonical pathways associated with plasma ACE2 included clathrin-mediated endocytosis signaling, actin cytoskeleton signaling, mechanisms of viral exit from host cells, EIF2 (eukaryotic initiation factor 2) signaling, and the protein ubiquitination pathway. In conclusion, in humans with heart failure, plasma ACE2 is associated with various clinical factors known to be associated with severe coronavirus disease 2019 (COVID-19), including older age, male sex, and diabetes mellitus, but is not associated with ACE inhibitor and angiotensin-receptor blocker use. Plasma ACE2 protein levels are prominently associated with multiple cellular pathways involved in cellular endocytosis, exocytosis, and intracellular protein trafficking. Whether these have a causal relationship with ACE2 or are relevant to novel coronavirus-2 infection remains to be assessed in future studies.
    Keywords:
    Angiotensin-converting enzyme 2
    Keywords: drug delivery, endocytosis, exocytosis, cancer cell, macrophage, nanoparticle, toxicity
    Citations (1,090)
    1. Changes in membrane capacitance evoked by the rapid photolysis of a caged Ca2+ compound, DM‐nitrophen or nitrophenyl‐EGTA, were investigated in undifferentiated PC12 cells. They were interpreted as representing exocytosis and endocytosis. 2. The Ca2+ jumps evoked two components of exocytosis. Slow exocytosis was selectively evoked with small increases in intracellular Ca2+ concentration between 5 and 10 microM, while fast exocytosis preceded the slow one at [Ca2+]i greater than 10 microM. 3. The release rates of the two components of exocytosis depended steeply on [Ca2+]i. A half‐maximal release rate was achieved at 8 and 24 microM for the slow and fast exocytoses, respectively. 4. Prior Ca2+ rises did not augment the fast exocytosis. 5. The fast exocytosis was often followed by a rapid decrease in membrane capacitance, representing endocytosis, after a delay of 0.5‐2 s. The speed and delay in the fast endocytosis were Ca2+ dependent. Amounts of the fast endocytosis tended to balance with those of the fast exocytosis evoked by the same Ca2+ jumps. 6. The slow exocytosis was followed by a sluggish endocytosis that was associated with large capacitance steps indicative of secretory processes involving large dense‐core vesicles. The onset of the slow endocytosis exhibited a complex Ca2+ dependence. The amounts of the slow endocytosis appeared to parallel those of the slow exocytosis. Prior induction of the slow exocytosis gave rise to selective excess retrieval of membrane during the slow endocytosis. 7. These data indicate the existence of two distinct populations of secretory vesicles in PC12 cells. They seem to couple selectively with specific endocytotic mechanisms. Our data suggest that the two vesicles belong to two distinct secretory pathways.
    Bulk endocytosis
    We studied endocytosis in chromaffin cells with both perforated patch and whole cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric catecholamine detection. We found that chromaffin cells exhibit two relatively rapid, kinetically distinct forms of stimulus-coupled endocytosis. A more prevalent “compensatory” retrieval occurs reproducibly after stimulation, recovering an approximately equivalent amount of membrane as added through the immediately preceding exocytosis. Membrane is retrieved through compensatory endocytosis at an initial rate of ∼6 fF/s. Compensatory endocytotic activity vanishes within a few minutes in the whole cell configuration. A second form of triggered membrane retrieval, termed “excess” retrieval, occurs only above a certain stimulus threshold and proceeds at a faster initial rate of ∼248 fF/s. It typically undershoots the capacitance value preceding the stimulus, and its magnitude has no clear relationship to the amount of membrane added through the immediately preceding exocytotic event. Excess endocytotic activity persists in the whole cell configuration. Thus, two kinetically distinct forms of endocytosis coexist in intact cells during perforated patch recording. Both are fast enough to retrieve membrane after exocytosis within a few seconds. We argue that the slower one, termed compensatory endocytosis, exhibits properties that make it the most likely mechanism for membrane recycling during normal secretory activity.
    Chromaffin cell
    Stimulus (psychology)
    Cell membrane
    Citations (187)
    Evoked exocytosis in excitable cells is fast and spatially confined and must be followed by coupled endocytosis to enable sustained exocytosis while maintaining the balance of the vesicle pool and the plasma membrane. Various types of exocytosis and endocytosis exist in these excitable cells, as those has been found from different types of experiments conducted in different cell types. Correlating these diversified types of exocytosis and endocytosis is problematic. By providing an outline of different exocytosis and endocytosis processes and possible coupling mechanisms here, we emphasize that the endocytic pathway is pre-determined at the time the vesicle chooses to fuse with the plasma membrane in one specific mode. Therefore, understanding the early intermediate stages of vesicle exocytosis may be instrumental in exploring the mechanism of tailing endocytosis.
    Bulk endocytosis
    Citations (38)
    A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 degrees C compared with 37 degrees C, or by NaN(3) treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.
    The effects of osmolar and ionic factors on endocytosis and exocytosis were investigated using rabbit reticulocytes and 125I-59Fe labelled transferrin. Endocytosis and exocytosis of transferrin and the uptake of iron were inhibited by increasing the osmolality or decreasing the ionic strength or pH of the cell incubation medium. However, elevation of the pH above 8.0 inhibited endocytosis but not exocytosis. Replacement of the NaCl in the incubation medium by Nal, NaF, NaSCN, NaCIO4, Na2SO4, Na phosphate, or Na Hepes inhibited endocytosis and iron uptake but only Nal, NaF, and NaSCN inhibited exocytosis. Transferrin exocytosis was insensitive to inhibitors of anion or cation transport, but endocytosis and iron uptake were inhibited by several anion transport inhibitors. Overall, transferrin endocytosis was more sensitive than exocytosis to most of the factors which were investigated, and the effects on the rates of endocytosis and iron uptake were quantitatively very similar. The results provide strong support for the concept that transferrin endocytosis is a necessary step in iron uptake by reticulocytes. They do not support the chemiosmotic models of exocytosis in their present formulations, out do not rule out the possible role of an osmotic event in exocytosis.
    Citations (19)
    Abstract Exocytosis occurs via fusion of secretory granules with the cell membrane, whereupon the granule content is at least partially released and the granule membrane is temporarily added to the plasma membrane. Exocytosis is balanced by compensatory endocytosis to achieve net equilibrium of the cell surface area and to recycle and redistribute components of the exocytosis machinery. The underlying molecular mechanisms remain a matter of debate. In this review, we summarize and discuss recent progress in the understanding of compensatory endocytosis, with the focus on chromaffin cells as a useful model for studying mechanisms of regulated secretion.
    Granule (geology)
    Chromaffin cell
    Abstract The GFP-based superecliptic pHluorin (SEP) enables detection of exocytosis and endocytosis, but its performance has not been duplicated in red fluorescent protein scaffolds. Here we describe ‘semisynthetic’ pH-sensitive protein conjugates that match the properties of SEP. Conjugation to genetically encoded self-labeling tags or antibodies allows visualization of both exocytosis and endocytosis, constituting new bright sensors for these key steps of synaptic transmission.
    Citations (0)