FINGERPRINTING PALEO-GROUNDWATER SOURCES USING OXYGEN ISOTOPES OF HEMATITE CONCRETIONS FROM THE "BOILER ROOM", MOAB AREA, UTAH
0
Citation
0
Reference
10
Related Paper
Live wire: Thermal decomposition of β-FeOOH nanowires at 550 °C in an oxygen-deficient atmosphere generates highly photoactive hematite nanowires (N-hematite), which yielded a substantially enhanced photocurrent density, as compared to a hematite sample prepared in air (A-hematite). This enhanced photoactivity is attributed to the improved donor density of hematite nanowires, as a result of formation of oxygen vacancies.
Photocurrent
Cite
Citations (341)
Hematite is a potential mineral for reconstructing the oxygen isotope composition and paleotemperature of paleowater. A highly accurate analysis of oxygen isotopes is essential. However, relative to other oxygenated minerals, we lack hematite reference materials that allow for internationally comparable analyses between different laboratories. To address this issue, we attempted to perform bulk rock oxygen isotope analysis on five hematite reference materials (GBW07223a, GBW07825, YSBC28740-95, YSBC28756-2008, Harvard 92649). Meanwhile, the oxygen isotope ratios of iron oxides (GBW07223a, GBW07825, YSBC28740-95, YSBC28756-2008) were obtained by mass balance involving other oxygen-bearing minerals such as quartz and silicates. In addition, the oxygen isotope ratios of iron oxides in an oolitic hematite (ca. 1.65 billion years ago) are consistent with the results of previous analyses of this class of minerals.
Oxide minerals
Isotope Analysis
Cite
Citations (8)
This paper reports on the synthesis of iron oxide nanowires using thermal oxidation of iron. The α-Fe 2 O 3 (hematite) and Fe 3 O 4 (magnetite) were successfully formed using this method. The morphological observation was done through the FESEM, while the XRD, EDX and Raman spectroscopy were used to determine the physical and structural properties of the produced nanostructures. It was found that the peaks intensities relative to the hematite, increased with the extent of oxidation period. The growth and final morphology of hematite was significantly controlled by the heating duration. A surface diffusion mechanism for nano-hematite growth was then proposed to account for the growth phenomena of this nanostructured formation.
Thermal oxidation
Cite
Citations (2)
Cite
Citations (14)
Hematite (α-Fe2O3) is one of the most common iron oxides and a sink for the toxic metalloid arsenic. Arsenic can be immobilized by adsorption to the hematite surface; however, the incorporation of As in hematite was never seriously considered. In our study we present evidence that, besides adsorption, the incorporation of As into the hematite crystals can be of great relevance for As immobilization. With the coupling of nanoresolution techniques and X-ray absorption spectroscopy the presence of As (up to 1.9 wt %) within the hematite crystals could be demonstrated. The incorporated As(5+) displays a short-range order similar to angelellite-like clusters, epitaxially intergrown with hematite. Angelellite (Fe4As2O11), a triclinic iron arsenate with structural relations to hematite, can epitaxially intergrow along the (210) plane with the (0001) plane of hematite. This structural composite of hematite and angelellite-like clusters represents a new immobilization mechanism and potentially long-lasting storage facility for As(5+) by iron oxides.
Cite
Citations (75)
Abstract This paper presents the characteristics of two different titania-hematite composite systems, namely titania-colloidal hematite particles and titania-nano hematite particles, and their use as photocatalysts. The transmission electron micrographs showed that the colloidal hematite particles were capped with layers of TiO
Cite
Citations (3)
We have developed a facile synthesis route to 1D structures of ultrathin polycrystalline hematite and goethite−hematite core−shells. One-dimensional structures of pure hematite and the goethite−hematite core−shell with very small diameters were synthesized in aqueous solution at low temperature with a simple, rapid method based on the oxidation of Fe3O4 nanoparticles without using surfactants.
Nanorod
Cite
Citations (13)
Lepidocrocite
Cite
Citations (54)
The nationally-recognized Susquehanna
Chorale will delight audiences of all
ages with a diverse mix of classic and
contemporary pieces. The ChoraleAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA¢AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂs
performances have been described
as AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA¢AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂemotionally unfiltered, honest
music making, successful in their
aim to make the audience feel,
to be moved, to be part of the
performance - and all this while
working at an extremely high
musical level.AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA¢AÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂAÂA Experience choral
singing that will take you to new
heights!
Cite
Citations (0)
Rock magnetism is useful in various applications. Hematite is one of the two most important carriers of magnetism in the natural world and its magnetic features were mostly studied through laboratory experiments using synthetic hematite samples. A gap exists between the magnetic behaviors of hematite contained in the natural rocks and ores and those of synthetic hematite samples. This paper presents the results of a rock magnetism study on the natural hematite ores from the Whaleback mine in the Hamersley Province in the northwest of Western Australia. It was found that high-grade hematite ores carry a much higher remanent magnetization than induced magnetization. Hematite ores with less than 0.1% magnetite appear to have an exponential correlation between the bulk susceptibility and hematite content in weight percentage, different from the commonly accepted linear relationship between the bulk susceptibility and hematite content obtained from synthetic hematite samples. The new knowledge gained from this study contributes to a better understanding of magnetic behaviors of hematite, particularly natural hematite, and hence applications to other relevant disciplines.
Magnetism
Rock magnetism
Iron ore
Cite
Citations (1)