logo
    Abstract:
    PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological targets with dioxin-like compounds emphasizing the potential for interactions.
    2,4-Dichlorophenoxyacetic acid (2,4-D) was assessed for systemic toxicity, reproductive toxicity, developmental neurotoxicity (DNT), developmental immunotoxicity (DIT), and endocrine toxicity. CD rats (27/sex/dose) were exposed to 0, 100, 300, 600 (female), or 800 (male) ppm 2,4-D in diet. Nonlinear toxicokinetic behavior was shown at high doses; the renal clearance saturation threshold for 2,4-D was exceeded markedly in females and slightly exceeded in males. Exposure was 4 weeks premating, 7 weeks postmating for P1 males and through lactation for P1 females. F1 offspring were examined for survival and development, and at weaning, pups were divided in cohorts, by sex and dose, and by systemic toxicity (10), DNT (10), DIT (20), and reproductive toxicity (≥ 23). Remaining weanlings were evaluated for systemic toxicity and neuropathology (10–12). Body weight decreased during lactation in high-dose P1 females and in F1 pups. Kidney was the primary target organ, with slight degeneration of proximal convoluted tubules observed in high-dose P1 males and in high-dose F1 males and females. A slight intergenerational difference in kidney toxicity was attributed to increased intake of 2,4-D in F1 offspring. Decreased weanling testes weights and delayed preputial separation in F1 males were attributed to decreased body weights. Endocrine-related effects were limited to slight thyroid hormone changes and adaptive histopathology in high-dose GD 17 dams seen only at a nonlinear toxicokinetic dose. 2,4-D did not cause reproductive toxicity, DNT, or DIT. The "No Observed Adverse Effect Level" for systemic toxicity was 300 ppm in both males (16.6mg/kg/day) and females (20.6mg/kg/day), which is approximately 6700- to 93 000-fold higher than that reported for 2,4-D exposures in human biomonitoring studies.
    Reproductive toxicity
    Developmental toxicity
    No-observed-adverse-effect level
    Weanling
    Citations (42)
    Abstract This study investigated the effects of exposure to the ubiquitous contaminants polychlorinated biphenyls (PCBs) on the fetal adrenal cortex and on plasma cortisol using the domestic sheep ( Ovis aries ) as a model. Pregnant ewes were intendedly subjected to oral treatment with PCB 153 (98 μg/kg bw/day), PCB 118 (49 μg/kg bw/day) or the vehicle corn oil from mating until euthanasia on gestation day 134 (±0.25 SE). However, because of accidental cross‐contamination occurring twice causing a mixed exposure scenario in all three groups, the focus of this paper is to compare three distinct groups of fetuses with different adipose tissue PCB levels (PCB 153high, PCB 118high and low, combined groups) rather than comparing animals exposed to single PCB congeners to those of a control group. When comparing endocrine and anatomical parameters from fetuses in the PCB 153high ( n = 13) or PCB 118high ( n = 14) groups with the low, combined group ( n = 14), there was a significant decrease in fetal body weight ( P < 0.05), plasma cortisol concentration ( P < 0.001) and adrenal cortex thickness ( P < 0.001). Furthermore, adrenal weight was decreased and plasma ACTH was increased only in the PCB 118high group. Expression of several genes encoding enzymes and receptors related to steroid hormone synthesis was also affected and mostly down‐regulated in fetuses with high PCB tissue levels. In conclusion, we suggest that mono‐and di‐ortho PCBs were able to interfere with growth, adrenal development and cortisol production in the fetal sheep model. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.
    Citations (15)
    Perinatal polychlorinated biphenyl (PCB) exposures still remain a serious health concern because offspring receive PCB burden from mother during vulnerable processes of development. Since cytochrome P450 (CYP) represents a toxicological endpoint, in the present study, representing an extended investigation of a previous multitasked one, we explored the long-term responsiveness of CYP1A and CYP2B isoforms by Western blot analysis in liver and whole brain of lactating (PN12), weaning (PN21), and adult offspring (PN60) rats prenatally and lactationally exposed to a reconstituted PCB mixture (RM) of noncoplanar PCB138, 153, 180, and coplanar PCB126 congeners. We chose highly chlorinated PCBs instead of lower chlorinated one, because their recalcitrance to biotransformation makes easy their accumulation/persistence in tissues and breast milk. Dioxin-like congener PCB126 binding aryl hydrocarbon receptor (AHR) is responsible of many toxic effects. Pregnant Sprague-Dawley dams with high affinity AHR received subcutaneous injection of RM (10 mg/kg body weight) daily during gestation (days 15-19) and twice a week during breast-feeding. The results evidenced a transfer of PCBs to neonates through milk and a significant responsiveness of hepatic CYP in both mothers and offspring. In liver of exposed progeny, CYP isoforms exhibited a significant increment at PN12 (70% over control) and at PN21 (270% over control). Contrary to dams, in adult PCB offspring CYP levels showed a decline up to values similar to those of control. This transient developmental responsiveness of CYP isoforms in offspring liver reflects roughly the time course of hepatic PCB levels previously reported. Even if congeners were detected in brain, we failed in evidencing a responsiveness of CYP isoforms probably because of region-specific CYP expression in this organ. In conclusion, induction of offspring hepatic CYP is index of liver PCB burden, and despite the insensitivity of whole brain CYP we cannot exclude brain vulnerability toward PCB. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 856-866, 2014.
    Congener
    Polychlorinated biphenyl
    Citations (10)
    Generally, the toxicity of BPA is considered rather weak which was based on conventional toxicity assessments in rodents.US Environment Protection Agent determined NOAEL of BPA at 50 mg/kg/day while European Union set it at 5 mg/ kg/day.However, concerns have been raised on the endocrine disrupting effects and the potential carcinogenesis from exposure to low-dose BPA, which generally do not follow monotonic dose response relationship; therefore, effects at lower doses could not be neglected.Indeed, BPA is known to induce cellular alterations associated with proliferation and carcinogenicity
    Xenoestrogen
    Citations (17)
    ABSTRACT Exposure to polychlorobiphenyl (PCB) mixtures at an early stage of development has been reported to affect endocrine glands; however, little is known about the precise toxicological properties of individual PCB. The present study was undertaken to determine whether prenatal exposure to 2,2′,4,4′,5,5′‐hexachlorobiphenyl (PCB 153), a di‐ ortho ‐substituted non‐coplanar congener, affects postnatal development in rat offspring. Pregnant Sprague‐Dawley rats (Crj: CD (SD) IGS) were given PCB 153 (0, 16, or 64 mg/kg/day) orally from gestational day (GD) 10 through GD 16, and developmental parameters in the male and female offspring were examined. We found no dose‐dependent changes in body weight, body length (nose–anus length), tail length, or the weights of kidneys, testes, ovaries and uterus in offspring at 1 or 3 weeks of age. Liver weights were increased in the PCB 153–treated groups, although we observed a significant difference only in males. Anogenital distance was unaffected in the PCB 153–treated groups. We observed a significant dose‐dependent decrease in the plasma concentrations of thyroxine and tri‐iodothyronine, whereas those of thyroid‐stimulating hormone were not significantly changed. In addition, there were no dose‐dependent changes in plasma concentrations of growth hormone and insulin‐like growth factor‐I in any dose group. These findings suggest that prenatal exposure to PCB 153 (GD 10–16, 16–64 mg/kg/day) may alter the thyroid status in rat offspring to some extent without affecting somatic growth or its related hormonal parameters.