logo
    Bias in mean vertical wind measured by VHF radars: significance of radar location relative to mountains
    0
    Citation
    0
    Reference
    20
    Related Paper
    The main purpose of the Super Dual Auroral Radar Network (Super‐DARN) is to use paired radars to deduce the F ‐region convection from Doppler measurements of backscatter seen at large ranges, typically beyond ∼900 km. Nearer to each HF radar, the nearest ranges at ∼165–400 km are dominated by meteor trail echoes. Once formed, the motion of these meteor trails is normally controlled by neutral winds in the 80–110 km altitude range. By combining the line‐of‐sight velocities from all 16 receiver beams (∼52° in azimuth) of a given SuperDARN radar, it is possible to determine the full horizontal wind vector field over the meteor trail height range. Elevation angles are also measured using an interferometer mode and as such height information can, in principle, be obtained from the combined range and elevation angle data. A comparison with neutral wind measurements from a colocated (Saskatoon, Canada) MF wind radar indicates good agreement between the two radar systems at heights of ∼95 km. Based on these detailed comparisons, a simple common method for determining two‐dimensional winds for all SuperDARN radars, which have extensive longitudinal coverage, was developed. Comparisons with other systems used for dynamical studies of tides and planetary waves are desirable and prove to be essential to obtain a good SuperDARN neutral wind motion analysis. The MF radars at Saskatoon and Tromsø, Norway, are located near the western and eastern ends of the Northern Hemisphere network of six SuperDARN radars. Comparisons between the two types of radars for two seasonal intervals (September and December) show that the SuperDARN radars provide good longitudinal coverage of tides in support of the more detailed MF radar data. The two systems complement each other effectively.
    Citations (43)
    On 21 December 1991 from approximately 1300 to approximately 1600 UTC a monochromatic wave train with an 8.2-min period was observed by the suite of instruments at the Flatland Atmospheric Observatory (FAO), located in very flat terrain near Champaign-Urbana, Illinois. A 915-MHz radar measured the vertical wind velocity w every 60 s from 0.55 km MSL (0.34 km AGL) to approximately 3 km with 250-m range gates, and a 50-MHz radar measured the oblique wind in four directions, as well as w, every 130 s from 2.75 to approximately 7.25 km with 750-m range gates. A meteorological ground station measured the surface pressure P, wind speed vector u and azimuth alpha, temperature, solar insolation, etc., every 30 s. P was also measured every 120 s by six digital barograph stations within 30 km of Flatland. Using the hodograph of surface vector u and alpha and the impedance relation, we estimated the azimuthal direction of propagation phi to be 45 deg +/- 15 deg clockwise from north, the intrinsic and apparent horizontal phase speeds C(sub i) and C(sub o), respectively, (which are about equal since the direction of propagation is about normal to the mean wind) to be 21 +/- 5 m/s, and the horizontal wavelength lambda to be 10.0 +/- 2.5 km. The peak-to-peak surface horizontal perturbation velocity varied from approximately 2 to 5 m/s from cycle to cycle.
    Hodograph
    Citations (0)
    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.
    Wind profiler
    Richardson number
    Tropopause
    Jet stream
    Citations (0)
    A new VHF clear‐air Doppler radar has been constructed in very flat terrain near Urbana, Illinois. This radar, called the Flatland radar, as presently configured measures a profile of the vertical component of the wind velocity every 2.5 minutes. It is found that typical time variances of vertical velocity over this very flat terrain are similar to the small variances observed during “quiet” periods near mountains. The observed absence of extended periods of large variance supports the hypothesis that the “active” periods observed near mountains are mainly due to orographic effects. The absence of such effects at Flatland should facilitate the study of other meteorological processes. For example, in the case study presented here it is suggested that the vertical motions associated with large‐scale baroclinic storms are measurable by the Flatland radar.
    Orographic lift
    Citations (16)
    Abstract : The principal sensor for the measurement program was the S-band FAA-Lincoln Laboratory Testbed Doppler Weather Radar (FL2). Both FL2 and a C-band Doppler Weather Radar operated by the University of North Dakota obtained reflectivity, mean velocity and spectrum width measurements with a radar geometry and scan sequences to facilitate determining the surface outflow features of microbursts at the anticipated ranges. This report describes the principal initial results from the Memphis operations, stressing the results from 1985 when the FL2 radar was fully operational. These results are compared to those from previous studies of wind-shear programs, e.g., NIMROD near Chicago, JAWS and CLAWS near Denver. During 1985, 102 microbursts were identified in real time along with 81 gust fronts. One of the dominant results is that most microbursts in the mid-south are wet; that is, they are accompanied by significant rainfall. This is in contrast, for example, to the results from Denver where more than half of all microbursts have little or no appreciable rain reaching the ground. Aside from this major difference, microbursts near Memphis were similar to those found elsewhere in the country in terms of wind shear magnitude. The report also gives more representative results from the aircraft operations and discusses the effectiveness of the ground-clutter filters used on the FL-2 radar.
    Microburst
    Memphis
    Weather radar
    Citations (0)
    Abstract Scanning polarimetric measurements from the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) systems are evaluated for the retrievals of snow-level (SL) heights, which are located below the 0°C isotherm and represent the altitude within the melting layer (ML) where snow changes to rain. The evaluations are conducted by intercomparisons of the SL estimates obtained from the Beale Air Force Base WSR-88D unit (KBBX) during a wet season 6-month period (from October 2012 to March 2013) and robust SL height measurements hSL from a high-resolution vertically pointing Doppler snow-level profiler deployed near Oroville, California. It is shown that a mean value height measurement hL3 between the estimates of the ML top and bottom, which can be derived from the WSR-88D level-III (L3) ML products, provides relatively unbiased estimates of SL heights with a standard deviation of about 165 m. There is little azimuthal variability in derived values of hL3, which is, in part, due to the use of higher radar beam tilts and azimuthal smoothing of the level-III ML products. Height estimates hrho based on detection of the ML minima of the copolar cross-correlation coefficient ρhv calculated from the WSR-88D level-II products are slightly better correlated with profiler-derived SL heights, though they are biased low by about 113 m with respect to hSL. If this bias is accounted for, the standard deviation of the ρhv minima–based SL estimates is generally less than 100 m. Overall, the results of this study indicate that, at least for closer radar ranges (up to ~13–15 km), the operational radar polarimetric data can provide snow-level estimates with a quality similar to those from the dedicated snow-level radar profilers.
    Citations (8)
    Winds play a very important role in the dynamics of the lower atmosphere, and there is a need to obtain vertical distribution of winds at high spatio-temporal resolution for various observational and modelling applications. Profiles of wind speed and direction obtained at two tropical Indian stations using a Doppler wind lidar during the Indian southwest monsoon season were inter-compared with those obtained simultaneously from GPS upper-air sounding (radiosonde). Mean wind speeds at Mahbubnagar (16.73° N, 77.98° E, 445 m above mean sea level) compare well in magnitude for the entire height range from 100 m to 2000 m. The mean difference in wind speed between the two techniques ranged from −0.81 m s−1 to +0.41 m s−1, and the standard deviation of wind speed differences ranged between 1.03 m s−1 and 1.95 m s−1. Wind direction by both techniques compared well up to about 1200 m height and then deviated slightly from each other at heights above, with a standard deviation in difference of 19°–48°. At Pune (18○32′ N, 73○51′ E, 559 m above mean sea level), wind speed by both techniques matched well throughout the altitude range, but with a constant difference of about 1 m s−1. The root mean square deviation in wind speed ranged from 1.0 to 1.6 m s−1 and that in wind direction from 20° to 45°. The bias and spread in both wind speed and direction for the two stations were computed and are discussed. The study shows that the inter-comparison of wind profiles obtained by the two independent techniques is very good under conditions of low wind speeds, and they show larger deviation when wind speeds are large, probably due the drift of the radiosonde balloon away from the location.
    Maximum sustained wind
    Wind profiler
    Airborne ocean backscatter dual polarization measurements at C and Ku-band obtained in high wind speed conditions (20 to 60 m/s) are presented. The VV and HH NRCS measurements are compared. The preliminary comparisons show that the HH NRCS measurements are slightly more sensitive to the surface wind speeds for high wind speed and precipitation conditions.
    Ku band
    Backscatter (email)
    C band
    Dual-polarization interferometry
    An experimental field campaign to measure synoptic-scale vertical velocities was conducted from 5 to 11 January 1991 in the Urbana-Champaign, Illinois, region, which is in very flat terrain far from mountains. Both the Flatland and the Urbana wind-profiling radars, which are separated by 23.1 km, participated in the campaign. Meteorological sounding balloons were also launched from the Flatland Observatory site. In this study, lime averages are compared of the vertical wind velocity measured directly by both radars in order to help verify the capability of wind-profiling radars to measure synoptic-scale vertical velocities. This comparison, of course, also provides an opportunity to evaluate the performance of both radars. The variance of the vertical velocity observed by the Flatland radar has been previously shown to be dominated by short-period fluctuations with most of the variance occurring at periods less than 6 h. Also, since March 1987 when the Flatland radar began operating nearly continuously, the vertical velocity measurements showed a nearly constant downward mean value of several centimeters per second in the troposphere. After bandpass filtering, the time-series measurements of vertical velocity to obtain 6-b and 1-day means, the filtered signal is compared to similar measurements made by the newly constructed Urbana radar. Both the 6-b and 1-day time averages of vertical velocity measured by the radars displayed large variations in time and height. Variations of 1.0–1.5 cm s−1 occurred frequently, which are considerably larger than the expected measurement error. Good to excellent agreement is generally found in the shape of height profiles measured by the two radars. These results suggest that wind-profiling radars located in very flat terrain are capable of measuring synoptic-scale vertical velocity profiles with useful precision.
    Synoptic scale meteorology
    Secondary surveillance radar
    Abstract. Comparisons are made between horizontal wind measurements carried out using a VHF-radar system at Aberystwyth (52.4°N, 4.1°W) and radiosondes launched from Aberporth, some 50 km to the south-west. The radar wind results are derived from Doppler wind measurements at zenith angles of 6° in two orthogonal planes and in the vertical direction. Measurements on a total of 398 days over a 2-year period are considered, but the major part of the study involves a statistical analysis of data collected during 75 radiosonde flights selected to minimise the spatial separation of the two sets of measurements. Whereas good agreement is found between the two sets of wind direction, radar-derived wind speeds show underestimates of 4–6% compared with radiosonde values over the height range 4–14 km. Studies of the characteristics of this discrepancy in wind speeds have concentrated on its directional dependence, the effects of the spatial separation of the two sets of measurements, and the influence of any uncertainty in the radar measurements of vertical velocities. The aspect sensitivity of radar echoes has previously been suggested as a cause of underestimates of wind speeds by VHF radar. The present statistical treatment and case-studies show that an appropriate correction can be applied using estimates of the effective radar beam angle derived from a comparison of echo powers at zenith angles of 4.2° and 8.5°.
    Zenith
    Wind profiler
    Citations (14)