logo
    miR-654-3p predicts the prognosis of hepatocellular carcinoma and inhibits the proliferation, migration, and invasion of cancer cells
    26
    Citation
    29
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    BACKGROUND: Increasing evidence reveals that aberrant microRNAs (miRNAs) expression play a crucial role in the tumorigenesis of cancers, including hepatocellular carcinoma (HCC), whereas the role of miR-654-3p in HCC remains unclear. This study aimed to investigate the role of miR-654-3p in HCC. ME THODS: Real-time quantitative PCR was performed to detect miR-654-3p expression in HCC tissues and cell lines. The association of miR-654-3p expression with clinical characteristics of HCC patients were analyzed. And the prognostic value of miR-654-3p was examined using Kaplan-Meier curve and Cox regression analysis. CCK-8 and Transwell assays were used to observe the effects of miR-654-3p on proliferation, migration, and invasion of HCC cells. RESULTS: The miR-654-3p expression was downregulated in both HCC tissues and cell lines, which was significantly associated with lymph node metastasis and TNM stage. Downregulation of miR-654-3p predicted poor prognosis of HCC patients. Overexpression of miR-654-3p inhibited HCC cell proliferation, migration, and invasion, while knockdown of miR-654-3p promoted these cellular behaviors in vitro. CONCLUSION: Our study suggested that miR-654-3p expression was downregulated in HCC and might serve as a potential prognostic marker and therapeutic target for the survival of HCC patients. miR-654-3p might exert a suppressor role in HCC through inhibiting tumor cell proliferation, migration, and invasion.
    Aberrantly expressed microRNAs (miRNAs/miRs) and their role in cancer development have recently gained more attention. However, the potential role of miRNAs in hepatocellular carcinoma (HCC) remains largely unknown. In this study, we demonstrated that miR-377 was markedly downregulated in HCC cell lines and primary human HCC tissues. The decreased expression of miR-377 contributes to the upregulation of Bcl-xL expression by targeting its 3-untranslated region (3-UTR). Functionally, knockdown of miR-377 noticeably increased HCC cell growth and colony formation and inhibited apoptosis. In contrast, overexpression of miR-377 suppressed cell proliferation and increased apoptosis. This study provides new insights for the use of miR-377 as a potential molecular target in HCC therapy.
    Abstract Background: ZNF674-AS1, a recently characterized long noncoding RNA, shows prognostic significance in hepatocellualar carcinoma and glioma. However, the expression and function of ZNF674-AS1 in non-small cell lung cancer (NSCLC) is unclear. Methods: In this work, we investigated the expression of ZNF674-AS1 in 83 pairs of NSCLC specimens and adjacent noncancerous lung tissues. The clinical significance of ZNF674-AS1 in NSCLC was analyzed. The role of ZNF674-AS1 in NSCLC growth and cell cycle progression was explored. Results: Our data show that ZNF674-AS1 expression is decreased in NSCLC compared to normal tissues. ZNF674-AS1 downregulation is significantly correlated with advanced TNM stage and decreased overall survival of NSCLC patients. Overexpression of ZNF674-AS1 inhibits NSCLC cell proliferation, colony formation, and tumorigenesis, which is accompanied by a G0/G1 cell cycle arrest. Conversely, knockdown of ZNF674-AS1 enhances the proliferation and colony formation of NSCLC cells. Biochemically, ZNF674-AS1 overexpression increases the expression of p21 through downregulation of miR-423-3p. Knockdown of p21 or overexpression of miR-423-3p blocks ZNF674-AS1-mediated growth suppression and G0/G1 cell cycle arrest. In addition, ZNF674-AS1 expression is negatively correlated with miR-423-3p in NSCLC specimens. Conclusions: ZNF674-AS1 suppresses NSCLC growth by downregulating miR-423-3p and inducing p21. This work suggests the therapeutic potential of ZNF674-AS1 in the treatment of NSCLC.
    Citations (0)
    Long non-coding RNAs (lncRNAs) are critical drivers and suppressors of human hepatocellular carcinoma (HCC). The downregulation of transmembrane protein 220 antisense RNA 1 (TMEM220-AS1) is correlated with poor prognosis in HCC. Nevertheless, the role of TMEM220-AS1 in HCC and the underlying mechanism remains unclear. In this study, TMEM220-AS1 levels were markedly reduced in HCC tissues compared with noncancerous tissues. TMEM220-AS1 downregulation was confirmed in HCC cell lines. TMEM220-AS1 expression was associated with tumor stage, venous infiltration, tumor size, and survival of HCC patients. TMEM220-AS1 overexpression suppressed the migration, invasion, and proliferation of HCC cells. Interestingly, ectopic expression of TMEM220-AS1 increased TMEM220 levels in HCC cells. Decreased TMEM220 levels were observed in HCC tissues and cell lines. TMEM220 expression was positively correlated with TMEM220-AS1 levels in HCC tissue samples and TMEM220 downregulation was significantly correlated with reduced patient survival. TMEM220 overexpression suppressed HCC cell proliferation and mobility. TMEM220 knockdown eliminated the suppressive effect of TMEM220-AS1 in HCCLM3 cells. Mechanistically, TMEM220 overexpression reduced the nuclear accumulation of β-catenin and decreased MYC, Cyclin D1, and Snail1 mRNA levels in HCCLM3 cells. BIO, a GSK3β inhibitor, eliminated TMEM220-induced Wnt/β-catenin pathway inactivation and inhibited HCC cell proliferation and mobility. In conclusion, TMEM220-AS1 and TMEM220 were expressed at low levels in HCC patients. TMEM220-AS1 inhibited the malignant behavior of HCC cells by enhancing TMEM220 expression and subsequently inactivating the Wnt/β-catenin pathway.
    Ectopic expression
    Citations (7)
    In this study, we found miR-362-5p was upregulated in bladder cancer tissues and we predicted that QKI is potential a target of miR-362-5p and MBNL1-AS1 might be able to directly bind with miR-362-5p. We attempted to evaluate whether miR-362-5p could play its roles in bladder cancer through regulating QKI (quaking) and whether the expression and function of miR-362-5p could be mediated by lncRNA MBNL1-AS1. We performed the gain- and loss- function experiments to explore the association between miR-362-5p expression and bladder cancer proliferation. In vivo, the nude mice were injected with miR-362-5p knockdown SW780 cells to assess the effects of miR-362-5p on tumor growth. The results showed upregulation of miR-362-5p promoted cell proliferation of bladder cancer cells. MBNL1-AS1 and QKI could directly bind with miR-362-5p, and knockdown of MBNL1-AS1 or QKI could abrogate the regulatory effects of miR-362-5p on bladder cancer cell proliferation. Furthermore, downregulation of miR-362-5p inhibited bladder tumor growth and increased QKI expression. Our data unveiled that miR-362-5p may play an oncogenic role in bladder cancer through QKI and MBNL1-AS1 might function as a sponge to mediate the miR-362-5p expression and function.
    Citations (21)
    The DNA damage response helps to maintain genome integrity, suppress tumorigenesis, and mediate the effects of radiotherapy and chemotherapy. Our previous studies have shown that Smad1 is upregulated and activated by Atm in DNA damage response, which can further bind to p53 and promote p53 stabilization. Here we report another aspect of the interplay between p53 and Smad1. Comparison of rectal tumor against paired paraneoplastic specimens and analysis of >500 colorectal tumors revealed that Smad1 was upregulated in tumor samples, which was attributable to p53 defects. Using MEFs as a model, we found that knockdown of the elevated Smad1 in p53−/− MEFs promoted cell proliferation, E1A/Ras-induced cell transformation, and tumorigenesis. Mechanistic studies suggest that elevated Smad1 and momentary activation inhibit cell proliferation by upregulating p57Kip2 and enhancing Atm–Chk2 activation. Surprisingly, elevated Smad1 appears to have a negative effect on chemotherapy, as colorectal tumors, primary cancer cells, and cell lines with Smad1 knockdown all showed an increase in chemosensitivity, which could be attributable to elevated p57Kip2. These findings underscore the significance of Smad1–p53 interaction in tumor suppression and reveal an unexpected role for Smad1 in chemoresistance of colorectal cancers.
    Citations (19)
    Abstract Glioblastoma (GBM) is the most common malignancy tumor of central nervous system. PTBP3 was closely associated with the development of tumor. However, the function and mechanism of PTBP3 in GBM is little known. We found that PTBP3 was upregulated in GBM, and higher expression of PTBP3 corrected with the poor survival of GBM patients. Knockdown PTBP3 reduced proliferation, EMT, invasion, and migration of GBM. Conversely, overexpressing PTBP3 has an opposite effect. Moreover, we found that PTBP3 stabilized Twist1 by decreasing its ubiquitination and degradation. Furthermore, orthotopic xenograft models were used to demonstrate the PTBP3 on the development of GBM in vivo . This study proved that PTBP3 promoted tumorigenesis of GBM by stabilizing Twist1, which provided a new therapeutic target for GBM.
    We have previously found that expression of MARVELD1 was remarkably downregulated in multiple tumor tissues, but unclear in hepatocellular carcinoma (HCC) and its function has not been explored yet. In the present study, to uncover the underlying mechanism of MARVELD1 in the pathogenesis and development of HCC, we investigated the expression pattern of MARVELD1 and its effect on tumor proliferation in HCC. The results indicated the frequent downregulation of MARVELD1 in clinic samples and cell lines of HCC resulted from promoter methylation, as well as genetic deletion. Furthermore, treatment of MARVELD1 unexpressing Hep3B2.1-7 and PLC/PRF/5 cells with the demethylating agent 5-aza-2' deoxycytidine restored its expression. Overexpression of MARVELD1 suppressed the proliferation of HCC cells in vitro and in vivo, whereas downregulation of endogenous MARVELD1 by shRNAs significantly enhanced these characters. MARVELD1 overexpression could enhance chemosensitivity of HCC cells to epirubicin and 10-hydroxycamptothecin. Corresponding to these results, the expression of p-ERK1/2 and cyclin D1 were decreased, whereas p16 and p53 were increased in MARVELD1-transfected cells. We also demonstrated that knockdown of MARVELD1 resulted in upregulation of p-ERK1/2 and cyclin D1, and downregulation of p16 and p53. Moreover, the effect of the decreased cell growth rate was significantly reversed when MARVELD1-overexpressing cells were trasfected with p53 or p16 siRNA. Our findings suggest that MARVELD1 is a tumor suppressor by negatively regulating proliferation, tumor growth and chemosensitivity of HCC cells via increasing p53 and p16 in vitro and in vivo. MARVELD1 may be a potential target for HCC therapy.
    P53 protein
    Hepatic carcinoma
    AIM:To evaluate the biological and clinical characteristics of miR-622 in gastric cancer. METHODS:We analyzed the expression of miR-622 in 57 pair matched gastric neoplastic and adjacent non-neoplastic tissues by quantitative real-time polymerase chain reaction.Functional analysis of miR-622 expression was assessed in vitro in gastric cancer cell lines with miR-622 precursor and inhibitor.The roles of miR-622 in tumorigenesis and tumor metastasis were analyzed using a stable miR-622 expression plasmid in nude mice.A luciferase reporter assay was used to assess the effect of miR-622 on inhibitor of growth family, member 1 (ING1) expression. RESULTS:Expression of miR-622 was down-regulated in gastric cancer.MiR-622 was found involved in differentia-tion and lymphatic metastasis in human gastric cancer.Ectopic expression of miR-622 promoted invasion, tumorigenesis and metastasis of gastric cancer cells both in vitro and in vivo.ING1 is a direct target of miR-622.CONCLUSION: These findings help clarify the molecular mechanisms involved in gastric cancer metastasis and indicate that miR-622 modulation may be a bona fide treatment of gastric cancer.
    Ectopic expression
    Citations (69)
    Upregulated gene 11 (URG11), a new gene upregulated by hepatitis B virus X protein, was found to be involved in the development and progression of several tumors. However, the role of URG11 in human non-small cell lung cancer (NSCLC) has not yet been determined. Therefore, the aim of the present study was to explore the role of URG11 in human NSCLC. Our results found that URG11 was highly expressed in human NSCLC tissues compared with matched normal lung tissues, and higher levels were found in NSCLC cell lines in comparison to the normal lung cell line. Moreover, we also found that knockdown of URG11 significantly inhibited proliferation, migration/invasion of NSCLC cells, as well as suppressed tumor growth in vivo. Furthermore, knockdown of URG11 suppressed the expression of β-catenin, c-Myc, and cyclin D1 in NSCLC cells. Taken together, the study reported here provided evidence that URG11 downregulation suppresses proliferation, invasion, and β-catenin expression in NSCLC cells. Thus, URG11 may be a novel potential therapeutic target for NSCLC.