Modelling the performance of a new cooling unit for refrigerated transport using carbon dioxide as the refrigerant
21
Citation
25
Reference
10
Related Paper
Citation Trend
Keywords:
Transcritical cycle
Vapor-compression refrigeration
Cooling capacity
Operating temperature
Vapor-compression refrigeration
Cite
Citations (3)
An experimental on the change of the shape and size of the minichannel evaporators to increase the cooling capacity of the CO2 air conditioning cycle was carried out. Two minichannel evaporators with the same heat transfer area were designed with different channel lengths. In this study, the ambient temperature was tested for both evaporators at 32.5°C. For both cases, the cooler pressure and evaporator pressure are 77 bar and 42 bar, respectively. The results show that the cooling capacity of the evaporator E2 (shorter length) is 6.6 better than that obtained from the evaporator E1 (longer length): the air outlet temperature of E2 is 1.4°C lower than that of E1. In addition, the temperature distribution of the evaporator E2 is better than that of the evaporator E1. The study also concluded that the COP of the E2 is 0.22 larger than that obtained from the E1.
Cooling capacity
Bar (unit)
Thermal expansion valve
Cite
Citations (0)
Transcritical cycle
Vapor-compression refrigeration
Cite
Citations (33)
Carbon dioxide (R744) is as a valid alternative to classical substances such as HFCs used in vapour compression plants. A transcritical refrigeration cycle is needed because the critical temperature of carbon dioxide is usually lower than the ambient temperature. In this chapter the performances of a transcritical cycle have been evaluated with a prototype R744 system working as a classical spit-systems to cool air. An experimental analysis has been carried out on the effect of: refrigerant charge, internal heat exchanger, heat rejection pressure on the energetic performances of the transcritical plant. An experimental analysis of a hybrid trans-critical refrigerator-desiccant wheel system has been carried out in order to improve the COP. The experimental transcritical cycle has been examined in comparison with a classical vapour compression plant working with the R134a.
Transcritical cycle
Vapor-compression refrigeration
Cite
Citations (0)
In this article, R1234ze(E), R152a, and three mixtures M1, M2, and M3 composed of R152a and R1234ze(E) (in the ratio of 60:40, 50:50, and 40:60, by mass, respectively) as drop-in replacements of R134a in vapor compression system were theoretically analyzed. The performance of the vapor compression system was compared in terms of compressor discharge temperature, volumetric cooling capacity, cooling capacity, compressor power consumption, and coefficient of performance. The results showed that R152a had better coefficient of performance as well as nearly equal volumetric cooling capacity and cooling capacity compared to R134a; however, flammable R152a running with high compressor discharge temperature was restricted. Cooling capacity of R1234ze(E) was far lower than that of R134a. M2 was selected as the best alternative for R134a. Volumetric cooling capacity of M2 and R134a was similar so that M2 can be used in R134a vapor compressor system without modifying compressor. Coefficient of performance of M2 was higher than that of R134a by about 3% with 7% lower cooling capacity and 10% lower compressor power consumption. Compressor discharge temperature of M2 was higher than that of R134a by about 2°C–5°C. It was concluded that M2 can primely be an energy conservation and environmental protection alternative to R134a in vapor compression system.
Cooling capacity
Vapor-compression refrigeration
Coefficient of performance
Cite
Citations (37)
Thermal expansion valve
Condenser (optics)
Vapor-compression refrigeration
Coefficient of performance
Working fluid
Boiling point
Cite
Citations (3)
Carbon dioxide (R744) is as a valid alternative to classical substances such as HFCs used in vapour compression plants. A transcritical refrigeration cycle is needed because the critical temperature of carbon dioxide is usually lower than the ambient temperature. In this chapter the performances of a transcritical cycle have been evaluated with a prototype R744 system working as a classical spit-systems to cool air. An experimental analysis has been carried out on the effect of: refrigerant charge, internal heat exchanger, heat rejection pressure on the energetic performances of the transcritical plant. An experimental analysis of a hybrid trans-critical refrigerator-desiccant wheel system has been carried out in order to improve the COP. The experimental transcritical cycle has been examined in comparison with a classical vapour compression plant working with the R134a.
Transcritical cycle
Vapor-compression refrigeration
Cite
Citations (0)
In this paper dynamic identification of the evaporator dynamics in a vapor compression cycle (VCC) subjected to imposed heat flux is studied. The imposed heat flux boundary condition at the evaporator represents a specific application of the VCC for electronics cooling. However, different models and control algorithms than traditional VCCs are required. First principle models are highly nonlinear and, hence, not practical for system control. A dynamic model identification of the refrigerant temperature at the exit of the evaporator, refrigerant pressure, and temperature of the heating element is performed by varying the expansion valve opening. It is shown that single-input single-output (SISO) identification is not sufficient to capture the dynamics of the evaporator, due to the coupling of the dynamics in the entire system. Including the effect of incoming mass flow rate into the evaporator to the model significantly improves the identification and prediction of the evaporator dynamics. Finally, a SISO controller based on the identified model, is designed and tested experimentally. The control objective is to maintain the temperature of the heating element below a set point, subjected to changes in heat flux.
Vapor-compression refrigeration
Thermal expansion valve
Electronics cooling
Cite
Citations (0)
In this paper dynamic identification of the evaporator dynamics in a vapor compression cycle (VCC) subjected to imposed heat flux is studied. The imposed heat flux boundary condition at the evaporator represents a specific application of the VCC for electronics cooling. However, different models and control algorithms than traditional VCCs are required. First principle models are highly nonlinear and, hence, not practical for system control. A dynamic model identification of the refrigerant temperature at the exit of the evaporator, refrigerant pressure, and temperature of the heating element is performed by varying the expansion valve opening. It is shown that single-input single-output (SISO) identification is not sufficient to capture the dynamics of the evaporator, due to the coupling of the dynamics in the entire system. Including the effect of incoming mass flow rate into the evaporator to the model significantly improves the identification and prediction of the evaporator dynamics. Finally, a SISO controller based on the identified model, is designed and tested experimentally. The control objective is to maintain the temperature of the heating element below a set point, subjected to changes in heat flux.
Vapor-compression refrigeration
Thermal expansion valve
Electronics cooling
Cite
Citations (0)
Vapor-compression refrigeration
Cite
Citations (18)