logo
    Regenerative responses following DNA damage – β-catenin mediates head regrowth in the planarian Schmidtea mediterranea
    4
    Citation
    107
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.
    Keywords:
    Planarian
    Regenerative Medicine
    Planaria
    Regeneration requires initiation of programs tailored to the identity of missing parts. Head-versus-tail regeneration in planarians presents a paradigm for study of this phenomenon. After injury, Wnt signaling promotes tail regeneration. We report that wounding elicits expression of the Wnt inhibitor notum preferentially at anterior-facing wounds. This expression asymmetry occurs at essentially any wound, even if the anterior pole is intact. Inhibition of notum with RNA interference (RNAi) causes regeneration of an anterior-facing tail instead of a head, and double-RNAi experiments indicate that notum inhibits Wnt signaling to promote head regeneration. notum expression is itself controlled by Wnt signaling, suggesting that regulation of feedback inhibition controls the binary head-tail regeneration outcome. We conclude that local detection of wound orientation with respect to tissue axes results in distinct signaling environments that initiate appropriate regeneration responses.
    Planarian
    Planaria
    Citations (4)
    Regeneration requires that the identities of new cells are properly specified to replace missing tissues. The Wnt signaling pathway serves a central role in specifying posterior cell fates during planarian regeneration. We identified a gene encoding a homolog of the Teashirt family of zinc-finger proteins in the planarian Schmidtea mediterranea to be a target of Wnt signaling in intact animals and at posterior-facing wounds. Inhibition of Smed-teashirt (teashirt) by RNA interference (RNAi) resulted in the regeneration of heads in place of tails, a phenotype previously observed with RNAi of the Wnt pathway genes β-catenin-1, wnt1, Dvl-1/2 or wntless. teashirt was required for β-catenin-1-dependent activation of posterior genes during regeneration. These findings identify teashirt as a transcriptional target of Wnt signaling required for Wnt-mediated specification of posterior blastemas.
    Planarian
    Planaria
    Citations (29)
    Regeneration, relying mainly on resident adult stem cells, is widespread. However, the mechanism by which stem cells initiate proliferation during this process in vivo is unclear. Using planarian as a model, we screened 46 transcripts showing potential function in the regulation of local stem cell proliferation following 48 h regeneration. By analyzing the regeneration defects and the mitotic activity of animals under administration of RNA interference (RNAi), we identified factor for initiating regeneration 1 (Fir1) required for local proliferation. Our findings reveal that Fir1, enriched in neoblasts, promotes planarian regeneration in any tissue-missing context. Further, we demonstrate that DIS3 like 3′-5′ exoribonuclease 2 (Dis3l2) is required for Fir1 phenotype. Besides, RNAi knockdown of Fir1 causes a decrease of neoblast wound response genes following amputation. These findings suggest that Fir1 recognizes regenerative signals and promotes DIS3L2 proteins to trigger neoblast proliferation following amputation and provide a mechanism critical for stem cell response to injury.
    Planarian
    Planaria
    Regenerative process
    Citations (11)
    Abstract The ability of cells to communicate is essential during pattern formation, as they make decisions that drive growth and form. One mode of cellular signaling is via bioelectrical properties determined by the activity of ion channels. Several studies have shown a role for bioelectric signaling in planarian regeneration, but these have focused on D. japonica and S. mediterranea. It is not known how the alterations of ion channel activity would affect regeneration in other species of planaria. Here, we tested the effect of ivermectin (IVM), a chloride channel opener drug commonly used to combat heart worms, on regeneration in a new species of planaria: D. dorotocephala. Exposure to IVM during regeneration resulted in patterning abnormalities, such as bifurcated tails with partial heads, as well as delayed regeneration. By testing the effect of drugs that target resting potential on regenerative repair in novel model species, additional insight is gained on the comparative roles of ionic signaling across taxa.
    Planaria
    Planarian
    Flatworm
    Blastema
    Danio
    Chloride channel
    Citations (0)
    Planarians can regenerate a whole animal from only a small piece of their body, and have become an important model for stem cell biology. To identify regenerative processes dependent on Wnt growth factors in the planarian Schmidtea mediterranea (Smed), we analyzed RNAi phenotypes of Evi, a transmembrane protein specifically required for the secretion of Wnt ligands. We show that, during regeneration, Smed-evi loss-of-function prevents posterior identity, leading to two-headed planarians that resemble Smed-beta-catenin1 RNAi animals. In addition, we observe regeneration defects of the nervous system that are not found after Smed-beta-catenin1 RNAi. By systematic knockdown of all putative Smed Wnts in regenerating planarians, we identify Smed-WntP-1 and Smed-Wnt11-2 as the putative posterior organizers, and demonstrate that Smed-Wnt5 is a regulator of neuronal organization and growth. Thus, our study provides evidence that planarian Wnts are major regulators of regeneration, and that they signal through beta-catenin-dependent and -independent pathways.
    Planarian
    Citations (182)
    Planarian
    Flatworm
    Planaria
    Blastema
    Citations (4)