logo
    Abstract : Contents: Experimental methods for detecting twins Determination of the twinning process Uses to known twinning elements Operative twin systems during deformation Prediction of the twin reflections for a given twinning system Quantitive estimates of amount of twinning.
    Citations (10)
    The temperature effect on slip and deformation twinning has been investigated in Cd single-crystals in tension in the temperature range from room temperature to 500 K. The observations of traces on the surfaces of the crystals show that there are twinning and slip at room temperature. Above 430 K slip takes place on the limited slip plane. On the other hand, as the temperature increases deformation twinning occurs on some new twinning plane after considerable slip, although deformation twinning is a common low temperature mode of plastic deformation. It is shown that the multiplicity of twinning systems aids deformation by twin rather than by slip in Cd single-crystals at high temperatures.
    Atmospheric temperature range
    Citations (2)
    Reports of Type II twins are quite rare for most crystal structures. When they do occur, they are usually one of a number of possible twinning modes observed in a particular material. However, for the triclinic phase devitrite, Na2Ca3Si6O16, which nucleates from commercial soda−lime−silica float glass subjected to suitable heat treatments, the only reported twinning mode to date is a Type II twinning mode. In this study, this Type II twinning mode is first examined by molecular dynamics simulation to determine the lowest energy configuration of perfect twin boundaries for the twin mode. This is then compared with the lowest energy configurations of perfect twin boundaries found for six possible Type I twinning modes for devitrite for which the formal deformation twinning shear is less than 0.6. The most favourable twin plane configuration for the Type II twinning crystallography is shown to produce reasonably low twin boundary energies and sensible predictions for the optimum locations of the twin plane, K 1, and the [1 0 0] rotation axis, η 1, about which the 180° Type II twinning operation takes place. By comparison, all the Type I twinning modes were found to have very energetically unstable atomic configurations, and for each of these twinning modes, the lowest energy configurations found all led to high effective K 1 twin boundary energies relative to perfect crystal. These results therefore provide a rationale for the experimental observation of the particular Type II twinning mode seen in devitrite.
    Triclinic crystal system
    Crystal (programming language)
    The fundamental theory of crystal twinning has been long established, leading to a significant advance in understanding the nature of this physical phenomenon. However, there remains a substantial gap between the elaborate theory and the practical determination of twinning elements. This paper proposes a direct and simple method - valid for any crystal structure and based on the minimum shear criterion - to calculate various twinning elements from the experimentally determined twinning plane for Type I twins or the twinning direction for Type II twins. Without additional efforts, it is generally applicable to identify and predict possible twinning modes occurring in a variety of crystalline solids. Therefore, the present method is a promising tool to characterize twinning elements, especially for those materials with complex crystal structure.
    Crystal (programming language)
    Citations (60)
    Single crystals of copper were deformed at 4.2°K and 77.3°K. At 4.2°K, after a large strain produced by normal slip, jerky flow (discontinuous slip) occurs. From the study of reactor irradiated crystals, it was deduced that a packet of 30 slip lines, each containing 104 dislocations, was released to form each jerk of the discontinuous flow. For samples of certain orientation the region of discontinuous flow was followed by a region of deformation twinning. The fact that deformation twinning was taking place was verified by x-ray methods. The twinning elements were determined to be the (111) plane and the [112] direction. At 77.3°K, discontinuous slip was not observed. In a limited range of orientations, twinning has been observed at 77.3°K. The effects of reactor irradiations on discontinuous slip and on twinning were also studied and it was determined that the occurrence of twinning was unaffected by the irradiations.
    Citations (322)