logo
    3D Printed Flexible and Stretchable Electronics
    0
    Citation
    1
    Reference
    10
    Related Paper
    Abstract:
    Three dimensional (3D) printing consists of sequential printing of various layers of materials on top of each other to create complex structures with different functionalities. Stereolithography (SLA) consists in the sequential exposure of a photochemical polymer. This way, each layer of the final 3D object is exposed by a ultra violet laser which crosslinks the photopolymer to convert it into a non-soluble material. In terms of disadvantages, although SLA can produce very high quality prototypes, the fragility and necessity of post curing of the 3D printed objects are still issues that have not been solved for this printing method. Polymeric materials with low melting points are some of the most widely used materials in the area of 3D printed electronics due to the low cost, chemical strength, and low processing costs. Hybrid 3D printed electronics has become one of the most researched topics in the area of flexible and stretchable electronics.
    Keywords:
    3d printed
    Stretchable electronics
    Printed Electronics
    Flexible Electronics
    Mechanical flexibility introduced in functional electronic devices has allowed electronics to avoid mechanical breakage, conform to nonplanar surfaces, or attach to deformable surfaces, leading to greatly expanded applications, and some research efforts have already led to commercialization. However, most of these devices are passively bendable by external driving forces. Actively bendable flexible thin film devices can be applied to new fields with new functionalities. Here, we report robotic flexible electronics with actively self-bendable flexible films that can serve as a platform for flexible electronics and other applications with the capability of reversible bending and unbending by electrical control. Experimental studies along with mechanical modeling enable the predictable and reversible transformation into different structures by adjusting the design parameters. Demonstrations for self-bendable flexible displays and soft robotic hands prove the feasibility of the concept.
    Flexible Electronics
    Stretchable electronics
    Soft Robotics
    Flexible display
    Citations (17)
    Abstract Liquid‐metal (LM)‐based flexible and stretchable electronics have attracted widespread interest in wearable computing, human–machine interaction, and soft robotics. However, many current examples are one‐off prototypes, whereas future implementation requires mass production. To address this critical challenge, an integrated multimaterial 3D printing process composed of direct ink writing (DIW) of sealing silicone elastomer and special LM‐silicone (LMS) inks for manufacturing high‐performance LM‐based flexible and stretchable electronics is presented. The LMS ink is a concentrated mixture of LM microdroplets and silicone elastomer and exhibits excellent printability for DIW printing. Guided by a verified theoretical model, a printing process with high resolution and high speed can be easily implemented. Although LMS is not initially conductive, it can be activated by pressing or freezing. Activated LMS possesses good conductivity and significant electrical response to strain. Owing to LMS's unique structure, LMS‐embedded flexible electronics exhibit great damage mitigation, in that no leaking occurs even when damaged. To demonstrate the flexibility of this process in fabricating LM‐based flexible electronics, multilayer soft circuits, strain sensors, and data gloves are printed and investigated. Notably, utilizing LMS's unique activating property, some functional circuits such as one‐time pressing/freezing‐on switch can be printed without any structural design.
    Stretchable electronics
    Printed Electronics
    Flexible Electronics
    Conductive ink
    Soft Robotics
    Citations (181)
    Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics.
    Stretchable electronics
    Flexible Electronics
    Citations (628)
    Stretchable/flexible electronics has attracted great interest and attention due to its potentially broad applications in bio-compatible systems. One class of these ultra-thin electronic systems has found promising and important utilities in bio-integrated monitoring and therapeutic devices. These devices can conform to the surfaces of soft bio-tissues such as the epidermis, the epicardium, and the brain to provide portable healthcare functionalities. Upon contractions of the soft tissues, the electronics undergoes compression and buckles into various modes, depending on the stiffness of the tissue and the strength of the interfacial adhesion. These buckling modes result in different kinds of interfacial delamination and shapes of the deformed electronics, which are very important to the proper functioning of the bio-electronic devices. In this paper, detailed buckling mechanics of these thin-film electronics on elastomeric substrates is studied. The analytical results, validated by experiments, provide a very convenient tool for predicting peak strain in the electronics and the intactness of the interface under various conditions.
    Stretchable electronics
    Delamination
    Flexible Electronics
    Citations (18)
    Abstract Coating inkjet‐printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six‐orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room‐temperature “sintering” process in which the liquid‐phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP‐Ga‐In on a 5 µm‐thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin‐film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo‐like electronics, the low‐cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like “electronic tattoos” and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn‐based biphasic electronics.
    Stretchable electronics
    Printed Electronics
    Flexible Electronics
    Conductive ink
    Gauge factor
    Flexible display
    Cleanroom
    Transfer printing
    Citations (276)
    In order to meet the further demand of the next-generation electronic devices in the transplantable, lightweight and portable performances, flexible and stretchable inorganic electronics attract much more attention in both industry and academia in recent years. Compared to organic electronics, stretchable and flexible inorganic electronics are fabricated with the integrated structures of inorganic components on complaint substrates, which own the stretchability and flexibility via mechanical design. Thus stretchable and flexible inorganic electronics have the high electron mobility and excellent conformability to non-planar environment subjected to large deformation. This paper reviews the recent progress on principle, design based on mechanics, integration based on transfer printing and the reliability analysis of stretchable and flexible inorganic electronics. Finally, the prospective is also described for future application in bioengineering and medicine.
    Stretchable electronics
    Transfer printing
    Flexible Electronics
    Citations (18)
    Printed Electronics
    Flexible Electronics
    Stretchable electronics
    Transfer printing
    Organic Electronics
    Soft Lithography
    Flexible display
    Citations (81)
    High-performance giant magnetoresistive (GMR) sensorics are realized by D. Karnaushenko, D. Makarov, and co-workers on page 880. These devices are printed at predefined locations on flexible circuitry. The printed magnetosensors remain fully operational over the complete consumer temperature range and reveal a GMR up to 37% and a sensitivity of 0.93 T−1 at 130 mT. With these specifications, printed magnetoelectronics can be controlled using flexible active electronics for the realization of smart packaging and energy-efficient switches.
    Printed Electronics
    Flexible Electronics
    3d printed
    Realization (probability)
    Citations (1)
    As new technologies arise such as wearable electronics, soft-robotics, Internet-of-Things (IoT), among others, mechanical compliance to diverse shapes has become an important new requirement for conventional electronics. Unfortunately, both conventional silicon-based electronic devices and printed circuit boards (PCBs) are characteristically rigid. Nonetheless, several strategies have been demonstrated to transform conventional electronics into more compliant platforms that can satisfy the new mechanical needs of the fore-mentioned novel technologies. In this paper, the use of organic-inorganic heterostructures will be discussed as an effective scheme to integrate diverse materials and simple techniques to achieve flexibility and even stretchability from the device level to system level. First, a novel approach will be described to develop silicon-based, highly-stretchable structures, through the optimized integration of different shapes and geometries, such as serpentines, horseshoes and spirals. Additionally, it will be shown that the incorporation of soft organic encapsulation can work synergistically to further improve the mechanical characteristics of the inorganic structures. On the other hand, a simple kirigami-based strategy will be described to show how to manufacture flexible and stretchable copper-onpolyimide- based PCBs. Once again, soft polymer encapsulation is demonstrated to improve the mechanical robustness of the implementation. Finally, the presented manufacturing strategies can offer an interesting and versatile approach to build ultra-conformal electronics from devices to system-on-board implementations.
    Stretchable electronics
    Soft Robotics
    Flexible Electronics
    Wearable Technology
    Robustness
    Organic Electronics
    Citations (1)