[The role of PNKP in maintenance of genome stability and neural development].
0
Citation
0
Reference
10
Related Paper
Keywords:
Neural Development
Cite
Sequence analysis of the Daphnia pulex genome holds some surprises that could not have been anticipated from what was learned so far from other arthropod genomes. It establishes Daphnia as an eco-genetical model organism par excellence.
Daphnia pulex
Model Organism
Pulex
Arthropod
Cite
Citations (22)
Robinia
Cite
Citations (43)
In several families of scale insects (coccids), the sex of an embryo is determined by the number of genetically active genomes present (one = males, two = females). In mealybugs (Pseudococcidae), both males and females develop from fertilized eggs but, in the embryos that develop into males, the set of chromosomes (genome) of paternal origin (PG) becomes heterochromatic (H) and genetically inactive and is not transmitted to the offspring. The mechanism that reduces the number of active genomes in male embryos may vary between families and even between congeneric species. Thus, in male embryos of most armored scale species (Diaspididae), the PG is eliminated, while in a few species it becomes H. In two genera of soft scales (Coccidae), males develop from unfertilized eggs when one of two identical genomes of maternal origin becomes H. In most male tissues, one genome remains H. However, in several tissues that become polyploid by endoreduplication, the PG becomes E and genetically active. The tissues in which the PG becomes E often vary between species and the analysis of hybrid males demonstrated that whether the PG becomes H or remains E is determined by the genome of maternal origin. The euchromatization of the PG in the haploid sector of mosaic male embryos and the presence of spermatocytes with two E genomes (instead of one E and one H), following the irradiation of young mealybug males, strongly suggest that the maintenance of the H state requires the presence of a genetically active genome.
Cite
Citations (62)
Abstract Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrient-poor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provision these same nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in its cytoplasm. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared with their closest nonendosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to an endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved codependencies with each other, Tremblaya, and their insect host.
Buchnera
Phylogenomics
Endosymbiosis
Pseudogene
Cite
Citations (22)
Polyploidy is increasingly recognized as a driver of biological diversity. How and why polyploidization affects gene expression is critical to understanding the link between ploidy elevation and diversification. In polyploid plants, multiple studies have demonstrated that ploidy elevation can confer major but variable consequences for gene expression, ranging from gene-by-gene alterations to entirely silenced genomes. By contrast, animal polyploids remain largely uncharacterized. Accordingly, how animals respond to and manage polyploidy events is not understood. Here, we address this important knowledge gap by analyzing transcriptomes from a triploid hybrid animal, a unisexual Ambystoma salamander, and three sexual Ambystoma species that represent all three parental genomes in the unisexual. We used a novel bioinformatics pipeline that includes competitively mapping triploid sequences to a reference set of orthologous genes in the sexual species to evaluate subgenome expression. Our comparisons of gene expression levels across the three parental genomes revealed that the unisexual triploid displays a pattern of genome balance, where 72% of the genes analyzed were expressed equally among the subgenomes. This result is strikingly different from the genome imbalance typically observed in hybrid polyploid plants. Our analyses represent the first to address gene expression in a triploid hybrid animal and introduce a novel bioinformatic framework for analyzing transcriptomic data.
Polyploid
Retrotransposon
Cite
Citations (30)
Summary We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short‐ and long‐read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27 969 protein‐coding genes and 6747 non‐coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach ( Prunus persica ) diverged around 5.88 million years ago. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). Transposable elements have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. Transposable elements may also be at the origin of important phenotypic differences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.
Synteny
Genome size
Cite
Citations (124)
ABSTRACT The sequence of the genome of “ Candidatus Tremblaya princeps” strain PCVAL, the primary endosymbiont of the citrus mealybug Planococcus citri , has been determined. “ Ca . Tremblaya princeps” presents an unusual nested endosymbiosis and harbors a gammaproteobacterial symbiont within its cytoplasm in all analyzed mealybugs. The genome sequence reveals that “ Ca . Tremblaya princeps” cannot be considered an independent organism but that the consortium with its gammaproteobacterial symbiotic associate represents a new composite living being.
Endosymbiosis
Strain (injury)
Candidatus
Cite
Citations (76)
Abstract Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrientpoor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya ) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provide these nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in the cytoplasm of Tremblaya . Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya . Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared to their closest non-endosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved co-dependencies with each other, Tremblaya , and their insect host. Significance Mealybugs are sap-feeding insects that house between one and three bacterial endosymbionts to supplement their nutritionally poor diets. Many mealybug-bacteria relationships were established tens or hundreds of millions of years ago, and these ancient examples show high levels host-endosymbiont genomic and metabolic integration. Here, we describe the complete genomes and cellular locations for two bacterial endosymbiont which have recently transitioned from a free-living to an intracellular state. Our work reveals the rapid emergence of metabolic interdependence between these two nascent endosymbionts, their partner bacterial co-symbiont in whose cytoplasm they reside, and their insect host cell. Our work confirms that intracellular bacteria rapidly adapt to a host-restricted lifestyle through breakage or loss of redundant genes.
Buchnera
Phylogenomics
Endosymbiosis
Pseudogene
Mealybug
Candidatus
Cite
Citations (2)
Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, 'Candidatus Regiella insecticola' and 'Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H. defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ∼55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids).
Buchnera
Prophage
Candidatus
Obligate
Bacterial genome size
Cite
Citations (90)