logo
    Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice
    31
    Citation
    62
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state. These results indicate that the movement of whiskers, a behavior that is not instructed or necessary in the task, can inform an observer about what a mouse is doing in the maze. Thus, the position of these mobile tactile sensors reflects a behavioral and movement-preparation state of the mouse. SIGNIFICANCE STATEMENT Behavior is a sequence of movements, where each movement can be related to or can trigger a set of other actions. Here we show that, in mice, the movement of whiskers (tactile sensors used to extract information about texture and location of objects) is coordinated with and predicts the behavioral state of mice: that is, what mice are doing, where they are in space, and where they are in the sequence of behaviors.
    Keywords:
    Whisking in animals
    Licking
    Rodents generate rhythmic whisking movements to explore their environment. Whisking trajectories, for one, appear as a fixed pattern of whisk cycles at 5-10 Hz driven by a brain stem central pattern generator. In contrast, whisking behavior is thought to be versatile and adaptable to behavioral goals. To begin to systematically investigate such behavioral adaptation, we established a whisking task, in which mice altered the trajectories of whisking in a goal-oriented fashion to gain rewards. Mice were trained to set the whisker to a defined starting position and generate a protraction movement across a virtual target (no touch-related tactile feedback). By ramping up target distance based on reward history, we observed that mice are able to generate highly specific whisking patterns suited to keep reward probability constant. On a sensorimotor level, the behavioral adaptation was realized by adjusting whisker kinematics: more distant locations were targeted using higher velocities (i.e., pointing to longer force generation), rather than by generating higher acceleration (i.e., pointing to stronger forces). We tested the suitability of the paradigm of tracking subtle alteration in whisking motor commands using small lesions in the rhythmic whisking subfield (RW) of the whisking-related primary motor cortex. Small contralateral RW lesions generated the deterioration of whisking kinematics with a latency of 12 days post-lesion, a change that was readily discriminated from changes in the behavioral adaptation by the paradigm.
    Whisking in animals
    Automaticity
    Barrel cortex
    Citations (5)
    Animals in their natural environments actively process spatiotemporally complex sensory signals in order to guide adaptive behavior. It therefore seems likely that the properties of both single neurons and neural ensembles should reflect the dynamic nature of such interactions. During exploratory behaviors, rats move their whiskers to actively discriminate between different tactile features. We investigated whether this dynamic sensory processing was reflected in the spatial and temporal properties of neurons in layer V of the 'whisker area' in the rat primary somatosensory cortex. We found that the majority of layer V neurons had large (8.5+/-4.9 whiskers) spatiotemporal receptive fields (i.e. individual cells responded best to different whiskers as a function of post-stimulus time), and that the excitatory responses of surround whiskers formed a spatial gradient of excitation that seemed to reflect the greater use of the ventral and caudal whiskers during natural behaviors. Analyses of ensembles of layer V neurons revealed that single-whisker stimuli activated a portion of layer V that extends well beyond a single cortical column (average of 5.6 barrel cortical columns). Based on these results, we conclude that the rat primary somatosensory cortex does not appear to operate as a static decoder of tactile information. On the contrary, our data suggest that tactile processing in rats is likely to involve the on-going interactions between populations of broadly tuned neurons in the thalamocortical pathway.
    Barrel cortex
    Stimulus (psychology)
    Citations (96)
    Layer IV of rodent primary somatosensory cortex is characterized by an array of whisker-related groups of neurons, known as “barrels.” Neurons within each barrel respond best to a particular whisker on the contralateral face, and, on deflection of adjacent whiskers, display relatively weak excitation followed by strong inhibition. A prominent hypothesis for the processing of vibrissal information within layer IV is that the multiwhisker receptive fields of barrel neurons reflect interconnections among neighboring barrels. An alternative view is that the receptive field properties of barrel neurons are derived from operations performed on multiwhisker, thalamic inputs by local circuitry within each barrel, independently of neighboring barrels. Here we report that adjacent whisker-evoked excitation and inhibition within a barrel are unaffected by ablation of the corresponding adjacent barrel. In supragranular neurons, on the other hand, excitatory responses to the ablated barrel’s associated whisker are substantially reduced. We conclude that the layer IV barrels function as an array of independent parallel processors, each of which individually transforms thalamic afferent input for subsequent processing by horizontally interconnected circuits in other layers.
    Barrel cortex
    Whisking in animals
    Citations (86)
    Animals actively acquire sensory information from the outside world, with rodents sniffing to smell and whisking to feel. Licking, a rapid motor sequence used for gustation, serves as the primary means of controlling stimulus access to taste receptors in the mouth. Using a novel taste-quality discrimination task in head-restrained mice, we measured and compared reaction times to four basic taste qualities (salt, sour, sweet, and bitter) and found that certain taste qualities are perceived inherently faster than others, driven by the precise biomechanics of licking and functional organization of the peripheral gustatory system. The minimum time required for accurate perception was strongly dependent on taste quality, ranging from the sensory-motor limits of a single lick (salt, ∼100 ms) to several sampling cycles (bitter, >500 ms). Further, disruption of sensory input from the anterior tongue significantly impaired the speed of perception of some taste qualities, with little effect on others. Overall, our results show that active sensing may play an important role in shaping the timing of taste-quality representations and perception in the gustatory system.