logo
    Identifying Hepatic Genes Regulating the Ovine Response to Gastrointestinal Nematodes
    0
    Citation
    0
    Reference
    20
    Related Paper
    SUMMARY The aim of this study was to elucidate transcriptional changes in the parasitic nematode Teladorsagia circumcincta upon encountering either naïve or immune ovine hosts. Pools of 100 000 exsheathed 3rd- stage T. circumcincta larvae were exposed in vitro to either an immune or naïve ovine abomasal environment, RNA was extracted from the larvae and sequenced using the Roche 454 platform. Each sample produced approximately 82 000 reads that assembled to give approximately 5500 Isotigs (contigs). The two sequence datasets were clustered together to give a total of 6969 clusters of which 18 were differentially expressed ( P <0·001) between the two groups. Clusters with a predominance of reads in larvae exposed to the immune abomasal environment encoded homologues of peptidyl-glycine alpha-amidating monooxygenase, heat shock-protein 16-2 and IDA-1, a tyrosine phosphatase-like receptor protein. Clusters with a predominance of reads in the naïve environment encoded homologues of cytochrome b, EGg Laying defective family member 21 and NADH dehydrogenase subunit 5. Gene ontology analyses indicated that larvae exposed to the immune environment showed an increase in expression of genes involved in ‘carbon utilization’, ‘response to stimulus’ and ‘developmental process’. These data suggest that T. circumcincta modulates gene expression in response to the immune status of the host.
    Teladorsagia circumcincta
    Immune status
    Citations (10)
    Gastrointestinal nematodes are amongst the most prevalent parasites infecting humans and livestock worldwide. Infective larvae of the soil-transmitted nematode Ascaris spp. enter the host and start tissue migration by crossing the intestinal epithelial barrier. The initial interaction of the intestinal epithelium with the parasite, however, has received little attention. In a time-resolved interaction model of porcine intestinal epithelial cells (IPEC-J2) and infective Ascaris suum larvae we addressed the early transcriptional changes occurring simultaneously in both organisms using dual-species RNA-Seq. Functional analysis of the host response revealed an overall induction of metabolic activity, without induction of immune responsive genes or immune signaling pathways and showing suppression of chemotactic genes like CXCL8/IL-8 or CHI3L1. Ascaris larvae, when getting in contact with the epithelium, showed induction of genes that orchestrate motor activity and larval development, such as myosin, troponin, myoglobin and protein disulfide isomerase 2 (PDI-2). In addition, excretory-secretory products that likely facilitate parasite invasion were increased, among them aspartic protease 6 or hyaluronidase. Integration of host and pathogen data in an inter-species gene co-expression network indicated links between nematode fatty acid biosynthesis and host ribosome assembly/ protein synthesis. In summary, our study provides new molecular insights into the early factors of parasite invasion, while at the same time revealing host immunological unresponsiveness. Reproducible software for dual RNA-Seq analysis of non-model organisms is available at https://gitlab.com/mkuhring/project_asuum and can be applied to similar studies.
    Ascaris suum
    Intestinal epithelium
    Citations (15)
    Gastrointestinal nematode (GIN) infections are one of the major constraints for grazing sheep and goat production worldwide. Genetic selection for resistant animals is a promising control strategy. Whole-transcriptome analysis via RNA-sequencing (RNA-seq) provides knowledge of the mechanisms responsible for complex traits such as resistance to GIN infections. In this study, we used RNA-seq to monitor the dynamics of the response of the abomasal mucosa of Creole goat kids infected with Haemonchus contortus by comparing resistant and susceptible genotypes. A total of 8 cannulated kids, 4 susceptible and 4 resistant to GIN, were infected twice with 10 000 L3 H. contortus. During the second infection, abomasal mucosal biopsies were collected at 0, 8, 15 and 35 days post-infection (dpi) from all kids for RNA-seq analysis. The resistant animals showed early activation of biological processes related to the immune response. The top 20 canonical pathways of differentially expressed genes for different comparison showed activation of the immune response through many relevant pathways including the Th1 response. Interestingly, our results showed a simultaneous time series activation of Th2 related genes in resistant compared to susceptible kids.
    Ostertagia ostertagi
    RNA-Seq
    Citations (23)
    The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23,632 bovine genes were expressed in the fundic abomasum. Of these, 13,758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427) with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%), Complement C3 (0.7%), and Immunoglobulin J chain (0.5%) were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR < 5%). Among the 94 224 splice junctions identified, 133 were uniquely present: 90 were observed only in resistant animals, and 43 were present only in susceptible animals. Gene Ontology (GO) enrichment of the genes under study uncovered an association with lipid metabolism, which was confirmed by an independent pathway analysis. Several pathways, such as FXR/RXR activation, LXR/RXR activation, LPS/IL-1 mediated inhibition of RXR function, and arachidonic acid metabolism, were impacted in resistant animals, which are potentially involved in the development of parasite resistance in cattle. Our results provide insights into the development of host immunity to gastrointestinal nematode infection and will facilitate understanding of mechanism underlying host resistance.
    Ostertagia ostertagi
    Citations (50)
    Abstract Gastrointestinal nematode infection is one of the major production problems for sheep producers worldwide due its high incidence, morbidity, and mortality in affected flocks. The study of long non-coding RNA (lncRNA) in liver tissue of high (HIR) and low immune responder (LIR) sheep to GINs using RNA-Sequencing technology may provide a better understanding of the gene regulation mechanism associated with the host response to the infection. The aim of this study was to identify differentially expressed (DE) lncRNA between HIR and LIR natural infested sheep and control group. Liver tissue samples from the 13 divergent animals (out of a population of 211) based on their immunoglobulin G levels after vaccination using Hen Egg White (HEW) Lysozyme, and immature abomasum worm counts [HIR (&gt; 4000) (n = 5), LIR (&lt; 1500) (n=5) and control (no parasite challenge) (n=4) groups] were used to perform transcriptomic analysis using RNA-Sequencing. The “Large Gap read mapping “and “Transcript Discovery” tools from CLC Genomics Workbench 20.0.4 (CLC Bio, Aarhus, Denmark), were used to map reads to a reference genome (Oar_rambouillet_v1.0) and transcript discovery, respectively. The FEELnc software was used to identify, from predicted transcript model, potential lncRNAs and classify those transcripts into intro putative lncRNAs and protein coding RNAs. As preliminary results, 8 and 48 DE lncRNAs for HIR and LIR compared to control group were identified, respectively using an adjusted p-value False Discovery Rate (FDR) &lt; 0.05 and Fold change (FC) abs &gt; 2. Functional analyses using the list of DE lncRNAs identified metabolic pathways related to immune function. In depth analysis will help to better understand the physiological mechanisms of resilience of high immune sheep.
    RNA-Seq
    Citations (0)
    Abstract One of the most significant physiological challenges to neonatal and juvenile ruminants is the development and establishment of the rumen. Using a subset of RNA-Seq data from our high-resolution atlas of gene expression in sheep (Ovis aries) we have provided the first comprehensive characterization of transcription of the entire gastrointestinal (GI) tract during the transition from pre-ruminant to ruminant. The dataset comprises 164 tissue samples from sheep at four different time points (birth, one week, 8 weeks and adult). Using network cluster analysis we illustrate how the complexity of the GI tract is reflected in tissue- and developmental stage-specific differences in gene expression. The most significant transcriptional differences between neonatal and adult sheep were observed in the rumen complex. Comparative analysis of gene expression in three GI tract tissues from age-matched sheep and goats revealed species-specific differences in genes involved in immunity and metabolism. This study improves our understanding of the transcriptomic mechanisms involved in the transition from pre-ruminant to ruminant by identifying key genes involved in immunity, microbe recognition and metabolism. The results form a basis for future studies linking gene expression with microbial colonization of the developing GI tract and provide a foundation to improve ruminant efficiency and productivity through identifying potential targets for novel therapeutics and gene editing.
    Ovis
    Citations (17)
    Background Gastrointestinal nematode infection is a major challenge to the health and welfare of mammals. Although mammals eventually acquire immunity to nematodes, this breaks down around parturition, which renders periparturient mammals susceptible to re-infection and an infection source for their offspring. Nutrient supplementation reduces the extent of periparturient parasitism, but the underlying mechanisms remain unclear. Here, we use a genome wide approach to assess the effects of protein supplementation on gene expression in the small intestine of periparturient rats following nematode re-infection. Methodology/Principal Findings The use of a rat whole genome expression microarray (Affymetrix Gene 1.0ST) showed significant differential regulation of 91 genes in the small intestine of lactating rats, re-infected with Nippostrongylus brasiliensis compared to controls; affected functions included immune cell trafficking, cell-mediated responses and antigen presentation. Genes with a previously described role in immune response to nematodes, such as mast cell proteases, and intelectin, and others newly associated with nematode expulsion, such as anterior gradient homolog 2 were identified. Protein supplementation resulted in significant differential regulation of 64 genes; affected functions included protein synthesis, cellular function and maintenance. It increased cell metabolism, evident from the high number of non-coding RNA and the increased synthesis of ribosomal proteins. It regulated immune responses, through T-cell activation and proliferation. The up-regulation of transcription factor forkhead box P1 in unsupplemented, parasitised hosts may be indicative of a delayed immune response in these animals. Conclusions/Significance This study provides the first evidence for nutritional regulation of genes related to immunity to nematodes at the site of parasitism, during expulsion. Additionally it reveals genes induced following secondary parasite challenge in lactating mammals, not previously associated with parasite expulsion. This work is a first step towards defining disease predisposition, identifying markers for nutritional imbalance and developing sustainable measures for parasite control in domestic mammals.
    Nippostrongylus brasiliensis
    Trichinella spiralis
    Heligmosomoides polygyrus
    Nematode infection
    Infection of sheep with the gastric nematode Teladorsagia circumcincta results in distinct Th2-type changes in the mucosa, including mucous neck cell and mast cell hyperplasia, eosinophilia, recruitment of IgA/IgE producing cells and neutrophils, altered T-cell subsets and mucosal hypertrophy. To address the protective mechanisms generated in animals on previous exposure to this parasite, gene expression profiling was carried out using samples of abomasal mucosa collected pre- and post- challenge from animals of differing immune status, using an experimental model of T. circumcincta infection. Recently developed ovine cDNA arrays were used to compare the abomasal responses of sheep immunised by trickle infection with worm-naïve sheep, following a single oral challenge of 50 000 T. circumcincta L3. Key changes were validated using qRT-PCR techniques. Immune animals demonstrated highly significant increases in levels of transcripts normally associated with cytotoxicity such as granulysin and granzymes A, B and H, as well as mucous-cell derived transcripts, predominantly calcium-activated chloride channel 1 (CLCA1). Challenge infection also induced up-regulation of transcripts potentially involved in initiating or modulating the immune response, such as heat shock proteins, complement factors and the chemokine CCL2. In contrast, there was marked infection-associated down-regulation of gene expression of members of the gastric lysozyme family. The changes in gene expression levels described here may reflect roles in direct anti-parasitic effects, immuno-modulation or tissue repair. (Funding; DEFRA/SHEFC (VT0102) and the BBSRC (BB/E01867X/1)).
    Teladorsagia circumcincta
    CXCL1
    Citations (26)