Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa
David HořákMichal FerencOndřej SedláčekFrancis Njie MotombiMiroslav SvobodaJan AltmanTomáš AlbrechtEric Djomo NanaŠtěpán JanečekMartin DančákĽuboš MajeskýElias Ndive LltongaJiří Doležal
30
Citation
73
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract Aim To test if tree species richness and forest structure drive spatial variation in avian communities along a tropical elevation gradient and to present information about the role of detailed forest parameters. Location A 2,000‐m long elevational gradient of tropical forest on Mt. Cameroon, west‐central Africa. Taxon Birds and trees. Methods We performed bird censuses and vegetation mapping at the same plots across six forested sites at elevations of 350, 650, 1,100, 1,500, 1,850, and 2,200 m a.s.l., with 16 plots per elevation. We tested the effects of elevation, forest structure and tree diversity on the species richness, functional diversity and β‐diversity of birds (Bray–Curtis dissimilarity). We used conditional inference trees based on random forests (RF) to investigate these relationships across all elevation sites as well as within elevations. Results Both tree and bird species richness declined monotonically with elevation. Vegetation structure correlated with elevation, and all vegetation attributes significantly differed among elevations. The RF explained 70% of the variance in avian species richness, with the most important predictors being elevation, proportion of dead trees, tree species richness and herb layer coverage. We found that elevation (and shrub layer) was a particularly important predictor of avian functional diversity. We identified no important predictor of bird species richness after standardization within elevations, and the proportion of dead trees was the sole important predictor of functional diversity. Within‐elevation β‐diversity in avian community composition was determined by the dissimilarity of the tree community and differences in leaf area index, solar radiation and spatial distance. The functional dissimilarity was best explained by leaf area index. Main conclusions Apart from elevation itself, spatial distance even within elevations correlated with compositional and functional variation among avian assemblages. Forest structural traits can have a significant influence on distribution of birds. Thus, gaps in the spatial distribution of species such as along elevations might be caused by fine‐scale recognition of suitable habitats.Keywords:
Elevation (ballistics)
Cloud forest
Biodiversity assessment of tropical taxa is hampered by their tremendous richness, which leads to large numbers of singletons and incomplete inventories in survey studies. Species estimators can be used for assessment of alpha diversity, but calculation of beta diversity is hampered by pseudo-turnover of species in undersampled plots. To assess the impact of unseen species, we investigated different methods, including an unbiased estimator of Shannon beta diversity that was compared to biased calculations. We studied alpha and beta diversity of a diverse ground ant assemblage from the Southeast Asian island of Borneo in different types of tropical forest: diperocarp forest, alluvial forest, limestone forest and heath forests. Forests varied in plant composition, geology, flooding regimes and other environmental parameters. We tested whether forest types differed in species composition and if species turnover was a function of the distance between plots at different spatial scales. As pseudo-turnover may bias beta diversity we hypothesized a large effect of unseen species reducing beta diversity. We sampled 206 ant species (25% singletons) from ten subfamilies and 55 genera. Diversity partitioning among the four forest types revealed that whereas alpha species richness and alpha Shannon diversity were significantly smaller than expected, beta-diversity for both measurements was significantly higher than expected by chance. This result was confirmed when we used the unbiased estimation of Shannon diversity: while alpha diversity was much higher, beta diversity differed only slightly from biased calculations. Beta diversity as measured with the Chao-Sørensen or Morisita-Horn Index correlated with distance between transects and between sample points, indicating a distance decay of similarity between communities. We conclude that habitat heterogeneity has a high influence on ant diversity and species turnover in tropical sites and that unseen species may have only little impact on calculation of Shannon beta diversity when sampling effort has been high.
Gamma diversity
Diversity index
Cite
Citations (14)
Gamma diversity
Jaccard index
Cite
Citations (14)
To understand patterns of alpha, beta and gamma diversities in fragmented landscapes we need to explore the three scale components in relation to potential drivers in a scale-dependent manner. Often, the drivers themselves can be partitioned to alpha, beta and gamma diversities. Thus, one can hypothesize that the scale-components of species diversity and drivers’ diversity match, i.e., that species alpha diversity is mainly explained by drivers’ alpha diversity, beta by beta and gamma by gamma. Here, we explore this ‘scale-matching’ hypothesis for spiders in two fragmented agricultural landscapes. In each landscape, we sampled spiders and their potential prey in 12 patches. Then, we sub-sampled pseudo-landscapes in which we calculated spider alpha, beta and gamma diversities using multiplicative diversity-partitioning. Next, we used variance partitioning analysis to explore the relative contribution of eleven explanatory variables from five thematic groups (sampling intensity, area, connectivity, habitat diversity and prey diversity), while further partitioning the habitat and prey diversities to their corresponding alpha, beta and gamma diversities. We found considerable evidence for scale-matching, with spiders’ alpha and beta diversities explained mostly by the corresponding alpha and beta diversities (respectively) of prey and/or habitat. We further found a strong effect of connectivity on spider beta diversity, but not on alpha and gamma diversities. For spiders gamma diversity, a cross-scale effect was observed. Our results suggest that multiple drivers from multiple scales interact in structuring patterns of spider alpha, beta and gamma diversities in agro-ecosystems, yet the strongest effects are of those drivers that match in scale.
Gamma diversity
Cite
Citations (15)
Beta-diversity has been repeatedly shown to decline with increasing elevation, but the causes of this pattern remain unclear, partly because they are confounded by coincident variation in alpha- and gamma-diversity. We used 8,795 forest vegetation-plot records from the Czech National Phytosociological Database to compare the observed patterns of beta diversity to null-model expectations (beta-deviation) controlling for the effects of alpha- and gamma-diversity. We tested whether \b{eta}-diversity patterns along a 1,200 m elevation gradient exclusively depend on the effect of varying species pool size, or also on the variation of the magnitude of community assembly mechanisms determining the distribution of species across communities (e.g., environmental filtering, dispersal limitation). The null model we used is a novel extension of an existing null-model designed for presence/absence data and was specifically designed to disrupt the effect of community assembly mechanisms, while retaining some key features of observed communities such as average species richness and species abundance distribution. Analyses were replicated in ten subregions with comparable elevation ranges. Beta-diversity declined along the elevation gradient due to a decrease in gamma-diversity, which was steeper than the decrease in alpha-diversity. This pattern persisted after controlling for alpha- and gamma-diversity variation, and the results were robust when different resampling schemes and diversity metrics were used. We conclude that in temperate forests the pattern of decreasing beta-diversity with elevation does not exclusively depend on variation in species pool size, as has been hypothesized, but also on variation in community assembly mechanisms. The results were consistent across resampling schemes and diversity measures, thus supporting the use of vegetation plot databases for understanding...
Gamma diversity
Null model
Elevation (ballistics)
Cite
Citations (43)
식물종 다양성이 높은 하천변 복원을 위해 8개 하천 13지점에서 자연하천변 식물군락의 이질성을 ${\beta}$ -diversity로 조사하였다. 그 결과, 하천에서 내륙으로 들어감에 따른 이질성의 평균값은 0.32이었다(0.23~0.37범위). 이 값은 식물군락의 종 구성이 6번 완전히 바뀌는 community turnover를 나타낸다. ${\beta}$ -diversity는 섬진강, 한강, 낙동강, 금강 수계 간에 차이가 없었고, 각 수계 안에서 하천 유역은 하류(0.23)보다 상류(0.36)에서 더 높았다(p level<0.05). 환경요인과의 관계를 알아보기 위해 다중회귀분석을 실시한 결과 ${\beta}$ -diversity는 경사도에서 유의성이 나타났다. Belt-transect를 통해 나타난 종들과 ${\beta}$ -diversity 값을 통해 하천변의 우점종 모식도를 그려보면 상류의 종조성은 6번 바뀌고, 하류의 종조성은 약 5번 바뀌었다. 본 연구 결과를 통해 하천 계획에 실질적으로 활용할 수 있는 식재 수종과 식재 패턴의 기초를 제시하였으며, 하천변 식물군락의 종 다양성을 높이기 위해서는 경사도를 높이는 것이 가장 중요하다. We have researched heterogeneity of naturalized river plant community by ${\beta}$ -diversity for restoration of river community which has high diversity plant species. As a result the average of heterogeneity was 0.32(range 0.23~0.37) from the river to the inland. This value shows community turnover of species composition of plant communities 6 times. The ${\beta}$ -diversity was no difference among water system of Seomjin river, Han river, Nakdong river and Geum river. The upper-river valley(0.36) was higher than lower-river valley(0.23) in each water system(p level<0.05). Multiple regressing analysis was used for look the relationship with Environmental factors as a result, it shows ${\beta}$ -diversity significant on a slope. River mimetic diagram with dominant species that appear through Belt-transect painted. Dominant plant species turned 6 time in upper-river and turned about 5 time in lower-river. The result of this study suggested practical basis of planting species and planting pattern. To improve species diversity of river plant community, slope degree raise is the most important.
Gamma diversity
Diversity index
Cite
Citations (3)
Vertical stratification and host tree species are factors with a high influence on the structure of communities of xylobiont beetles. However, little is known about how this influence varies between common and rare species. Based on estimated species richness, we compared alpha and beta diversity patterns of common and rare species in the canopy of the Leipzig floodplain forest to assess their response to vertical stratification and tree species. We used two measures of rarity: threat level in red lists and abundance based on octaves. The understory displayed a significantly higher number of common species than the canopy strata. Conversely, the canopy strata harbored a higher number of rare species. Turnover was always dominant over richness differences in beta diversity partitions. Using Raup-Crick null models and non-metric multidimensional scaling, we found that the vertical strata accounted for 19% of the overall beta diversity of common species and for 15% of the overall beta diversity of rare species. The tree species accounted for 7% of the overall beta diversity of the common species and 3% of the beta diversity of the rare species. Our results indicate that studies carried out in the understory alone do not allow drawing conclusions regarding the biodiversity in the canopy strata, and thus regarding the overall community structure of xylobiont beetles in the canopy.
Understory
Rare species
Stratification (seeds)
Gamma diversity
Common species
Nestedness
Cite
Citations (10)
Patterns of species diversity are essential to understand community structure. We aimed to determine species diversity and patterns of beta diversity in different spatial scales. We sampled three thousand individuals between the coordinates 22°10'S to 22°16'S and 47°47'W to 48°00'W to assess species diversity in three spatial scales (maximum distances of 80 m, 1,400 m, and 12,000 m), using the point-centered-quarter method. We partitioned gamma diversity into alpha and beta components. Beta diversity was partitioned into dissimilarities produced by spatial species turnover and nestedness. The contribution of beta diversity to gamma diversity was greater than that of alpha diversity in all scales, although the patterns of species diversity were similar for the evaluated scales, and was similar to that described for larger spatial scales. The sampled fragments presented means of 15 exclusive species and 47.5 species per fragment, and dissimilarities [β(SØR)=0.7] almost completely explained (94 %) by spatial species turnover. The results indicate that the remnant fragments are residual patches of an originally heterogeneous vegetation. The fragmentation processes could have progressed differently in each portion of the original vegetation, producing the current heterogeneous vegetation. Thus, there is a potential of high local species extinctions if the remnant fragments are deforested.
Gamma diversity
Nestedness
Spatial heterogeneity
Cite
Citations (7)
Beta diversity – the variation in species composition among spatially discrete communities – and sampling grain – the size of samples being compared – may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.
Gamma diversity
Cite
Citations (16)
Gamma diversity
Vascular plant
Cite
Citations (12)
Species diversity is determined as Alpha or Beta level. Other levels of diversity come up to different scales of the Alpha and Beta diversity. Alpha diversity is calculated intra-medium, while Beta diversity is calculated inter-medium. Physiographic and edaphically factors affect species diversity significantly. For this reason, It is necessary that species diversity must be contacted with Physiographic and edaphically factors, which is an argument in ecology. When applied for species diversity expression instead of an ecosystem expression, a lot of alive groups such as plants, animals, insects, soil microorganism are mentioned. For this reason, to determine species diversity as qualitative and quantitative is an investigation combined by the disciplines such as botanic, entomology, zoology altogether. But Ecology intends to investigate relationships between this diversity dates and site factors. In this way, underlying areas in protection, areas having rich species diversity as potential, changes in species diversity with time and effects of different factors on species diversity in the similar environment can be determined.Keywords: Diversity index, Species diversity, Alpha-Beta-Gamma diversity
Gamma diversity
Ecosystem diversity
Diversity index
Cite
Citations (1)