UV surface plasmon resonance modification by graphene Pi plasmon resonance (Conference Presentation)
Xueling ChengSourangsu BanerjiJieying MaoSara ArezoomandanTing ZhangSteve BlairBerardi Sensale‐RodriguezYunshan Wang
0
Citation
0
Reference
10
Related Paper
Abstract:
Despite of increasing understandings of UV plasmonic materials, materials that can enable active tuning of UV plasmonic resonance has not been reported. Here, we demonstrate a modification of UV SPR on an aluminum (Al) hole-array by coupling Graphene π plasmon resonance with Al SPR. Graphene monolayer exhibits an abnormal absorption peak in the UV region (270-290nm) due to π plasmon resonance. The location and intensity of the absorption peak depend on the position of Fermi-level, which can be adjusted by electric or chemical doping. Al SPR is shown here to be modified by coupling Graphene π plasmon resonance with Al SPR.
FDTD simulation shows the modification of Al hole-array transmission by adding a single layer of Graphene on top. The shifts of transmission dips after adding a Graphene layer shows a distinct transition at around the Graphene π plasmon position. For transmission dips that are located at shorter wavelength compared to Graphene π plasmon, up to 8nm blue shifts occur after adding Graphene. On the other hand, up to 20nm redshifts occur for transmission dips that are at a longer wavelength relative to Graphene π plasmon. This change in the sign of shifts of transmission dips corresponds to the change in the sign of the real permittivity of Graphene. The amount of shifts diminishes as the transmission dip moves further away from Graphene π plasmon resonance into the visible spectrum. Experimentally we have observed redshifts of SPR dips but not blue shifts possibly due to the poor light collection below 250nm.Keywords:
Localized surface plasmon
Blueshift
Surface plasmon resonance imaging and surface plasmon induced fluorescent are sensitive tools for surface analysis. However, existing instruments in this area have provided limited capability for concurrent detection, and may be large and expensive. We demonstrate a highly cost-effective system capable of concurrent surface plasmon resonance microscopy (SPRM) and surface plasmon resonance-enhanced fluorescence (SPRF) imaging, allowing for simultaneous monitoring of reflectivity and fluorescence from discrete spatial regions. The instrument allows for high performance imaging and quantitative measurements with surface plasmon resonance, and surface plasmon induced fluorescence, with inexpensive off-the-shelf components.
Localized surface plasmon
Fluorescence-lifetime imaging microscopy
Cite
Citations (8)
Surface-plasmon-resonance (SPR) sensors are widely used in biological, chemical, medical, and environmental sensing. SPR sensors supporting two surface-plasmon modes can differentiate surface binding interactions from bulk index changes at a single sensing location. We present a new approach to dual-mode SPR sensing that offers improved differentiation between surface and bulk effects. By using an angular interrogation, both long- and short-range surface plasmons are simultaneously excited at the same location and wavelength but at different angles. Initial experiments indicate that angular interrogation offers at least a factor of 3.6 improvement in surface and bulk cross-sensitivity compared to wavelength-interrogated dual-mode SPR sensors.
Localized surface plasmon
Cite
Citations (97)
A plasmonic nanochannel structure consisting of periodic vertical Au/Si/Au nanochannels connected by U-shaped gold layers is demonstrated as a narrow-band plasmonic thermal emitter. Due to coupling of localized surface plasmons in the channels and propagating surface plasmons under the U-shaped gold layers, a narrow-band emission peak is observed.
Localized surface plasmon
Cite
Citations (0)
In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.
Localized surface plasmon
Particle (ecology)
Cite
Citations (0)
Precise control of thermal evaporation deposition parameters allows the reproducible production of silver and gold island films on glass substrates with tunable surface plasmon resonance wavelengths. Specific combinations of substrate temperature, deposition rate, and film thickness produce films exhibiting surface plasmon resonance wavelengths that can be adjusted from throughout the visible and into the near infrared regions of the electromagnetic spectrum. The effects of deposition parameters on surface plasmon resonance wavelengths are quantified using a so-called “design of experiment” analysis. The analysis produces reliable predictive models for producing Ag and Au films with predetermined surface plasmon resonance wavelengths.
Localized surface plasmon
Deposition
Cite
Citations (199)
We demonstrate an efficient nanoscale electrical detector for propagating surface plasmons, tightly confined to nanoscale silver wires. Our technique is based on the near-field coupling between guided plasmons and a nanowire field-effect transistor. We demonstrate that this near-field circuit can efficiently detect the plasmon emission from a single quantum dot that is directly coupled to the plasmonic waveguide.
Localized surface plasmon
Cite
Citations (34)
We have systematically investigated the localized surface plasmon resonance (LSPR) of the silver nanoparticles by using electron energy loss spectroscopy (EELS) and optical simulation based on boundary element methods with respect to the diameter and the impact parameter variations. The both peaks of EELS and optical curve were occurred from 3.2 to 3.8 eV. Interestingly, we found two types of plasmon modes. At the impact parameter from 0 to R, the plasmon showed the properties as bulk plasmon, while at the greater value than R it showed the surface plasmon mode. This result showed the EELS simulation was better to observe a high-order of LSPR spectra than optical simulation. High-order was originated from a higher multipolar mode and weak interaction in surface plasmon phenomenon. As shown above, the EELS measurement can detect a high-order mode of LSPR than the optical measurement.
Localized surface plasmon
Silver nanoparticle
Cite
Citations (0)
Bimetallic strip
Localized surface plasmon
Cite
Citations (11)
Abstract Surface plasmons are collective oscillations of free electrons localized at surfaces of structures made of metals. Since the surface plasmons induce fluctuations of electric charge at surfaces, they are accompanied by electromagnetic oscillations. Electromagnetic fields associated with surface plasmons are localized at surfaces of metallic structures and significantly enhanced compared with the excitation field. These two characteristics are ingredients for making good use of surface plasmons in plasmonics . Plasmonics is a rapidly growing and well-established research field, which covers various aspects of surface plasmons towards realization of a variety of surface-plasmon-based devices. In this paper, after summarizing the fundamental aspects of surface plasmons propagating on planar metallic surfaces and localized at metallic nanoparticles, recent progress in plasmonic waveguides, plasmonic light-emitting devices and plasmonic solar cells is reviewed.
Localized surface plasmon
Plasmonic solar cell
Cite
Citations (261)
This paper presents a strategy for the signal enhancement of surface plasmon resonance biosensors using colloidal gold nanoparticles and a silica layer. We describe the method for the deposition of a silica-stabilized gold nanoparticle layer on a gold film, namely an enhanced surface plasmon resonance chip. This chip shows significant changes in its surface plasmon resonance signals when biomolecules are attached to its surface as compared to a normal gold surface. These characteristics are closely related to the surface plasmon resonance effect as determined using prostate-specific antigen. The detection limit of the enhanced surface plasmon resonance chip is determined to be 0.01 ng/mL for a prostate-specific antigen immunoassay. The use of an enhanced surface plasmon resonance chip makes it possible to enhance signals 1000-fold compared to the signals obtained by conventional surface plasmon resonance sensing. The enhancement of the surface plasmon resonance spectral shift results from the coupling of the surface and particle plasmons through the application of a silica-stabilized gold nanoparticle layer on the gold surface.
Localized surface plasmon
Cite
Citations (1)