logo
    Effect of 5-aminolevulinic acid on the haem biosynthesis pathway in pancreatic cancer and pancreatic ductal epithelial cell lines
    0
    Citation
    6
    Reference
    10
    Related Paper
    Abstract:
    Introduction: 5-aminolevulinic acid (ALA) generates protoporphyrin IX (PpIX)-induced fluorescence by acting as a substrate for the haem biosynthesis pathway. Despite suggestions that ALA could be used for pancreatic cancer photodiagnostics, the pancreatic cancer cell line PANC-1 only shows weak fluorescence following ALA administration. A possible explanation was that the haem biosynthesis pathway varies between cancers. Methods: We compared the mRNA expression of the haem biosynthesis pathway of PANC-1 (weak fluorescence) with the pancreatic cancer cell line CFPAC-1 (strong fluorescence) and the pancreatic ductal cell line H6c7 (control) with or without 24 hours ALA incubation. Cells were seeded on day one, fresh media with or without ALA (0.5mM) added on day two, and RNA extracted on day three. Quantitative real-time polymerase chain reaction was performed to assess the relative mRNA expression of four membrane transporters and eight enzymes responsible for haem biosynthesis. Results: Post-ALA incubation, CFPAC-1 demonstrated significant downregulation of cell membrane ALA influx transporter PEPT1, downregulation of ALA synthase and upregulation of the mitochondrial membrane transporter ABCB6. PANC-1, whilst showing similar changes to ALA synthase and ABCB6, showed significant upregulation of the PpIX efflux transporter ABCG2. PANC-1 also had minimal PEPT1 expression pre- and post-ALA. H6c7 demonstrated significant up- or downregulation of three transporters and five enzymes. Conclusion: Poor PpIX-induced fluorescence in PANC-1 is likely to be secondary to decreased ALA influx from low PEPT1 expression and increased ABCG2 expression. The use of nanocarriers to deliver ALA and/or ABCG2 inhibitors may improve ALA-induced fluorescence in PANC-1 and other ALA-resistant cancers.
    Keywords:
    Abcg2
    Protoporphyrin IX
    ATP-binding cassette (ABC) genes play a role in the resistance of malignant cells to anticancer agents. The ABC gene products, including ABCB1 (P-glycoprotein) and ABCG2 (breast cancer-resistance protein [BCRP], mitoxantrone-resistance protein [MXR], or ABC transporter in placenta [ABCP]), are also known to influence oral absorption and disposition of a wide variety of drugs. As a result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. Naturally occurring variants in ABC transporter genes have been identified that might affect the function and expression of the protein. This review focuses on recent advances in the pharmacogenetics of the ABC transporters ABCB1 and ABCG2, and discusses potential implications of genetic variants for the chemotherapeutic treatment of cancer.
    Abcg2
    Mitoxantrone
    Efflux
    P-glycoprotein
    Multidrug Resistance-Associated Proteins
    Citations (123)
    Adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRPs) are expressed in high concentrations at various physiological barriers (e.g. blood-brain barrier, blood-testis barrier, blood-tumor barrier), where they impede the tissue accumulation of various drugs by active efflux transport. Changes in ABC transporter expression and function are thought to be implicated in various diseases, such as cancer, epilepsy, Alzheimers and Parkinsons disease. The availability of a non-invasive imaging method which allows for measuring ABC transporter function or expression in vivo would be of great clinical use in that it could facilitate the identification of those patients that would benefit from treatment with ABC transporter modulating drugs. To date three different kinds of imaging probes have been described to measure ABC transporters in vivo: i) radiolabelled transporter substrates ii) radiolabelled transporter inhibitors and iii) radiolabelled prodrugs which are enzymatically converted into transporter substrates in the organ of interest (e.g. brain). The design of new imaging probes to visualize efflux transporters is inter alia complicated by the overlapping substrate recognition pattern of different ABC transporter types. The present article will describe currently available ABC transporter radiotracers for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and critically discuss strengths and limitations of individual probes and their potential clinical applications. Keywords: ABC transporter, blood-brain barrier, breast cancer resistance protein, multidrug resistance-associated protein, P-glycoprotein, Positron emission tomography, single-photon emission computed tomography, tariquidar (XR9576), zosuquidar (LY335979), phosphatidylcholine translocase
    Abcg2
    P-glycoprotein
    Efflux
    Solute carrier family
    Citations (62)
    The human breast cancer resistance protein (BCRP, also know as ABCG2, MXR, or ABCP) is one of the more recently discovered ATP-binding cassette (ABC) transporters that confer resistance on cancer cells by mediating multidrug efflux. In the present study, we have obtained functional expression of human BCRP in the Gram-positive bacterium Lactococcus lactis. BCRP expression conferred multidrug resistance on the lactococcal cells, which was based on ATP-dependent drug extrusion. BCRP-mediated ATPase and drug transport activities were inhibited by the BCRP-specific modulator fumitremorgin C. To our knowledge these data represent the first example of the functional expression of a mammalian ABC half-transporter in bacteria. Although members of the ABCG subfamily (such as ABCG1 and ABCG5/8) have been implicated in the transport of sterols, such a role has not yet been established for BCRP. Interestingly, the BCRP-associated ATPase activity in L. lactis was significantly stimulated by (i) sterols including cholesterol and estradiol, (ii) natural steroids such as progesterone and testosterone, and (iii) the anti-estrogen anticancer drug tamoxifen. In addition, BCRP mediated the efflux of [3H]estradiol from lactococcal cells. Our findings suggest that BCRP may play a role in the transport of sterols in human, in addition to its ability to transport multiple drugs and toxins.
    Abcg2
    Efflux
    ABCG1
    Citations (158)
    Variations in drug uptake and efflux, as well as changes in intracellular drug entrapment and distribution may represent important resistance mechanisms to cancer therapy. A variety of ATP binding cassette transporters (ABC) localised in multiple cell membranes is implied in those phenomena, representing a mechanism of protection of cells against xenobiotics. Many cancer cell lines over express some ABC transporters, especially p-glycoprotein, MRP1 and BCRP. This over expression is related to worse cancer treatment outcome and, in some cases, reduced overall survival of cancer patients. This paper reviews the location and physiological role of the three transporters mentioned and also describes the drugs that are substrates of these proteins. The usefulness of animal and cellular models to evaluate the role of these transporters on the uptake and efflux of anticancer drugs is discussed. Finally, the results of preclinical and clinical studies about the utility of some inhibitors of these pumps, as well as the implications of polymorphism of ABC transporters on the efficacy and safety of anticancer therapeutics are reported. Keywords: abc (atp binding cassette) transporters, abcg2 transporter (atp-binding cassette transporter placentaspecific, abcp, breast cancer resistance protein, bcrp, and mitoxantrone-resistance protein, mrx), anticancer therapeutics, multidrug resistance (mdr), modulation of mdr
    Abcg2
    Efflux
    P-glycoprotein
    Multidrug Resistance-Associated Proteins
    ABCC1
    Mitoxantrone
    Citations (24)
    The phenomenon of multidrug resistance in cancer is often associated with the overexpression of the ABC (ATP-binding cassette) transporters Pgp (P-glycoprotein) (ABCB1), MRP1 (multidrug resistance-associated protein 1) (ABCC1) and ABCG2 [BCRP (breast cancer resistance protein)]. Since the discovery of Pgp over 35 years ago, studies have convincingly linked ABC transporter expression to poor outcome in several cancer types, leading to the development of transporter inhibitors. Three generations of inhibitors later, we are still no closer to validating the 'Pgp hypothesis', the idea that increased chemotherapy efficacy can be achieved by inhibition of transporter-mediated efflux. In this chapter, we highlight the difficulties and past failures encountered in the development of clinical inhibitors of ABC transporters. We discuss the challenges that remain in our effort to exploit decades of work on ABC transporters in oncology. In learning from past mistakes, it is hoped that ABC transporters can be developed as targets for clinical intervention.
    Abcg2
    ABCC1
    Efflux
    P-glycoprotein
    Citations (212)
    The recent identification of drug-metabolizing enzymes cytochrome P450 (CYP) in the human blood-brain barrier (BBB) raises the question of whether these enzymes act in concert with ATP-binding cassette (ABC) transporters to limit the brain distributions of drugs. We recently demonstrated several CYP genes in freshly isolated human brain microvessels; the main isoforms expressed were CYP1B1 and CYP2U1. Many studies using different experimental approaches have revealed that P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and the multidrug resistance-associated protein 4 (MRP4, ABCC4) are the main ABC transporters in the human BBB. The first part of this review covers recent studies on the expression, regulation and function of CYP450 and ABC transporters in the rodent and human BBBs. The second part focuses on the possible interplay between some CYPs and certain ABC transporters at the BBB, which makes it a determining element of brain drug concentrations and thus of the effects of centrally acting drugs. Keywords: ATP-binding cassette transporters, blood-brain barrier, cytochromes P450, expression, interplay, regulation, brain microvascular endothelial cells (BMECs), first-pass effect, abluminal plasma membranes, CAR
    Abcg2
    P-glycoprotein
    Human brain
    Citations (88)