logo
    Reconstructed ancient nitrogenases suggest Mo-specific ancestry
    0
    Citation
    97
    Reference
    4
    Related Paper
    Abstract:
    The nitrogenase metalloenzyme family, essential for supplying fixed nitrogen to the biosphere, is one of life s key biogeochemical innovations. The three isozymes of nitrogenase differ in their metal dependence, each binding either a FeMo-, FeV-, or FeFe-cofactor for the reduction of nitrogen. The history of nitrogenase metal dependence has been of particular interest due to the possible implication that ancient marine metal availabilities have significantly constrained nitrogenase evolution over geologic time. Here, we combine phylogenetics and ancestral sequence reconstruction, a method by which inferred, historical protein sequence information can be linked to functional molecular properties, to reconstruct the metal dependence of ancient nitrogenases. Inferred ancestral nitrogenase sequences at the deepest nodes of the phylogeny suggest that ancient nitrogenases were Mo-dependent. We find that active-site sequence identity can reliably distinguish extant Mo-nitrogenases from V- and Fe-nitrogenases, as opposed to modeled active-site structural features that cannot be used to reliably classify nitrogenases of unknown metal dependence. Taxa represented by early-branching nitrogenase lineages lack one or more biosynthetic nifE and nifN genes that are necessary for assembly of the FeMo-cofactor, suggesting that early Mo-dependent nitrogenases may have utilized an alternate pathway for Mo-usage predating the FeMo-cofactor. Our results underscore the profound impacts that protein-level innovations likely had on shaping global biogeochemical cycles throughout Precambrian, in contrast to organism-level innovations which characterize Phanerozoic eon.
    Keywords:
    Biogeochemical Cycle
    In recent years, our understanding of biological nitrogen fixation has been bolstered by a diverse array of scientific techniques. Still, the origin and extant distribution of nitrogen fixation has been perplexing from a phylogenetic perspective, largely because of factors that confound molecular phylogeny such as sequence divergence, paralogy, and horizontal gene transfer. Here, we make use of 110 publicly available complete genome sequences to understand how the core components of nitrogenase, including NifH, NifD, NifK, NifE, and NifN proteins, have evolved. These genes are universal in nitrogen fixing organisms—typically found within highly conserved operons—and, overall, have remarkably congruent phylogenetic histories. Additional clues to the early origins of this system are available from two distinct clades of nitrogenase paralogs: a group composed of genes essential to photosynthetic pigment biosynthesis and a group of uncharacterized genes present in methanogens and in some photosynthetic bacteria. We explore the complex genetic history of the nitrogenase family, which is replete with gene duplication, recruitment, fusion, and horizontal gene transfer and discuss these events in light of the hypothesized presence of nitrogenase in the last common ancestor of modern organisms, as well as the additional possibility that nitrogen fixation might have evolved later, perhaps in methanogenic archaea, and was subsequently transferred into the bacterial domain.
    Citations (823)
    Abstract Ribulose 1,5‐bisphosphate (Ru BP ) carboxylase/oxygenase (RuBis CO , or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen‐sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem‐bearing, oxygen‐evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the adaptation of key oxygen‐sensitive components of Rubisco prior to, or coincident with, the Great Oxidation Event.
    Lineage (genetic)
    Citations (40)
    ABSTRACT The nitrogenase metalloenzyme family, essential for supplying fixed nitrogen to the biosphere, is one of life’s key biogeochemical innovations. The three isozymes of nitrogenase differ in their metal dependence, each binding either a FeMo-, FeV-, or FeFe-cofactor where the reduction of dinitrogen takes place. The history of nitrogenase metal dependence has been of particular interest due to the possible implication that ancient marine metal availabilities have significantly constrained nitrogenase evolution over geologic time. Here, we reconstructed the evolutionary history of nitrogenases, and combined phylogenetic reconstruction, ancestral sequence inference, and structural homology modeling to evaluate the potential metal dependence of ancient nitrogenases. We find that active-site sequence features can reliably distinguish extant Mo-nitrogenases from V- and Fe-nitrogenases, and that inferred ancestral sequences at the deepest nodes of the phylogeny suggest these ancient proteins most resemble modern Mo-nitrogenases. Taxa representing early-branching nitrogenase lineages lack one or more biosynthetic nifE and nifN genes that both contribute to the assembly of the FeMo-cofactor in studied organisms, suggesting that early Mo-nitrogenases may have utilized an alternate and/or simplified pathway for cofactor biosynthesis. Our results underscore the profound impacts that protein-level innovations likely had on shaping global biogeochemical cycles throughout the Precambrian, in contrast to organism-level innovations that characterize the Phanerozoic Eon.
    Biogeochemical Cycle
    Citations (2)
    This study examines the structural features and phylogeny of the alpha subunits of 69 full-length NifD (MoFe subunit), VnfD (VFe subunit), and AnfD (FeFe subunit) sequences.The analyses of this set of sequences included BLAST scores, multiple sequence alignment, examination of patterns of covariant residues, phylogenetic analysis and comparison of the sequences flanking the conserved Cys and His residues that attach the FeMo cofactor to NifD and that are also conserved in the alternative nitrogenases. The results show that NifD nitrogenases fall into two distinct groups. Group I includes NifD sequences from many genera within Bacteria, including all nitrogen-fixing aerobes examined, as well as strict anaerobes and some facultative anaerobes, but no archaeal sequences. In contrast, Group II NifD sequences were limited to a small number of archaeal and bacterial sequences from strict anaerobes. The VnfD and AnfD sequences fall into two separate groups, more closely related to Group II NifD than to Group I NifD. The pattern of perfectly conserved residues, distributed along the full length of the Group I and II NifD, VnfD, and AnfD, confirms unambiguously that these polypeptides are derived from a common ancestral sequence.There is no indication of a relationship between the patterns of covariant residues specific to each of the four groups discussed above that would give indications of an evolutionary pathway leading from one type of nitrogenase to another. Rather the totality of the data, along with the phylogenetic analysis, is consistent with a radiation of Group I and II NifDs, VnfD and AnfD from a common ancestral sequence. All the data presented here strongly support the suggestion made by some earlier investigators that the nitrogenase family had already evolved in the last common ancestor of the Archaea and Bacteria.
    Conserved sequence
    Sequence (biology)