The Protein Arginine Methyltransferases 1 and 5 affect Myc properties in glioblastoma stem cells.
Annarita FaviaLuisa SalvatoriSimona NanniLisa K. Iwamoto-StohlSérgio ValenteAntonello MaiFiorella ScagnoliRosaria Anna FontanellaPierangela TottaSergio NasiBarbara Illi
0
Citation
0
Reference
20
Related Paper
Abstract:
Protein Arginine (R) methylation is the most common post-translational methylation in mammalian cells. Protein Arginine Methyltransferases (PRMT) 1 and 5 dimethylate their substrates on R residues, asymmetrically and symmetrically, respectively. They are ubiquitously expressed and play fundamental roles in tumour malignancies, including glioblastoma multiforme (GBM) which presents largely deregulated Myc activity. Previously, we demonstrated that PRMT5 associates with Myc in GBM cells, modulating, at least in part, its transcriptional properties. Here we show that Myc/PRMT5 protein complex includes PRMT1, in both HEK293T and glioblastoma stem cells (GSCs). We demonstrate that Myc is both asymmetrically and symmetrically dimethylated by PRMT1 and PRMT5, respectively, and that these modifications differentially regulate its stability. Moreover, we show that the ratio between symmetrically and asymmetrically dimethylated Myc changes in GSCs grown in stem versus differentiating conditions. Finally, both PRMT1 and PRMT5 activity modulate Myc binding at its specific target promoters. To our knowledge, this is the first work reporting R asymmetrical and symmetrical dimethylation as novel Myc post-translational modifications, with different functional properties. This opens a completely unexplored field of investigation in Myc biology and suggests symmetrically dimethylated Myc species as novel diagnostic and prognostic markers and druggable therapeutic targets for GBM.Keywords:
HEK 293 cells
Proto-Oncogene Proteins c-myc
Temozolomide
Druggability
Abstract Protein Arginine (R) methylation is the most common post-translational methylation in mammalian cells. Protein Arginine Methyltransferases (PRMT) 1 and 5 dimethylate their substrates on R residues, asymmetrically and symmetrically, respectively. They are ubiquitously expressed and play fundamental roles in tumour malignancies, including glioblastoma multiforme (GBM) which presents largely deregulated Myc activity. Previously, we demonstrated that PRMT5 associates with Myc in GBM cells, modulating, at least in part, its transcriptional properties. Here we show that Myc/PRMT5 protein complex includes PRMT1, in both HEK293T and glioblastoma stem cells (GSCs). We demonstrate that Myc is both asymmetrically and symmetrically dimethylated by PRMT1 and PRMT5, respectively, and that these modifications differentially regulate its stability. Moreover, we show that the ratio between symmetrically and asymmetrically dimethylated Myc changes in GSCs grown in stem versus differentiating conditions. Finally, both PRMT1 and PRMT5 activity modulate Myc binding at its specific target promoters. To our knowledge, this is the first work reporting R asymmetrical and symmetrical dimethylation as novel Myc post-translational modifications, with different functional properties. This opens a completely unexplored field of investigation in Myc biology and suggests symmetrically dimethylated Myc species as novel diagnostic and prognostic markers and druggable therapeutic targets for GBM.
HEK 293 cells
Proto-Oncogene Proteins c-myc
Protein methylation
Temozolomide
Cite
Citations (36)
Abstract Chromatin modifying enzymes, and specifically the protein arginine methyltransferases (PRMTs) have emerged as important targets in cancer. PRMT4, also known as CARM1, is overexpressed in a number of cancers, including breast, prostate, pancreatic, and lung cancer. Our lab reported the overexpression of PRMT4 in the context of acute myeloid leukemia (AML), showing that more than 70% of cytogenetically normal AML patients have up-regulation of PRMT4. Here, we investigated the role of PRMT4 in normal hematopoiesis and leukemia development. In order to study the role of PRMT4 in normal hematopoiesis, Prmt4-floxed mice were crossed with Vav1-cre mice purchased from the Jackson Laboratory. Inducible Prmt4 conditional KO mice were generated by crossing Prmt4-floxed mice with Mx1-Cre mice and Prmt4 gene excision was induced by poly(I:C). Using this hematopoietic specific knockout system, we show that loss of PRMT4 has little effect on normal hematopoiesis, but promotes the differentiation of hematopoietic stem and progenitor cells. Next we evaluated the role of PRMT4 in leukemia development using leukemia transplantation models driven by fusion oncoproteins. Strikingly, the knockout of PRMT4 completely abrogates leukemia initiation in fetal liver transplantation models driven by the AML1-ETO or MLL-AF9 fusion proteins. We further characterized the mechanism for the leukemia-specific dependence on PRMT4 using leukemia cell lines and found that knockdown of PRMT4 impairs cell cycle progression, decreases proliferation, and induces rapid apoptosis. To examine PRMT4 dependent changes in gene expression in a leukemia system, we used lentiviral vectors that express RFP and shRNAs directed against PRMT4. We knocked down PRMT4 in four leukemia cell lines or normal human cord-blood derived CD34+ cells. Gene set enrichment analysis showed that all four leukemia cell lines with knockdown of PRMT4 significantly down-regulated E2F target genes compared to the scrambled control. Chromatin immunoprecipitation analysis (ChIP) confirmed the presence of PRMT4 and H3R17 dimethylation at the promoter regions of E2F1 targets. The PRMT4 conditional knockout mice and PRMT4 knockdown experiments both suggest that the loss of PRMT4 protein has a selective effect on leukemia cells compared to normal hematopoietic stem and progenitor cells. Collectively, this work suggests that targeting PRMT4 through chemical inhibition may be an effective therapeutic strategy for AML and other cancers with up-regulation of PRMT4. Citation Format: Sarah M. Greenblatt, Pierre-Jacques J. Hamard, Takashi Asai, Na Man, Concepcion Martinez-Caja, Fan Liu, Stephen Nimer. Identification of CARM1/PRMT4 as a novel therapeutic target for AML [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3340. doi:10.1158/1538-7445.AM2017-3340
Cite
Citations (0)
Abstract Deregulated expression of the MYC transcription factor occurs in a majority of human cancers and correlates with high proliferation, reprogrammed cellular metabolism and poor prognosis. Over-expressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates the expression of distinct subsets of genes. However, the critical effectors of MYC in tumorigenesis remain largely unknown. Here, we show that during lymphomagenesis in Eµ-myc transgenic mice, MYC directly up-regulates the transcription of the core snRNP assembly genes, including Prmt5, an arginine methyltransferase that methylates Sm proteins. This coordinated regulatory effect is critical for snRNP biogenesis, effective mRNA splicing, cell survival and proliferation. Indeed, Prmt5 haplo-insufficiency significantly delays lymphoma onset in Eµ-myc transgenic mice and the acute deletion of PRMT5 in established lymphomas enhances the survival of tumor-bearing animals. In human lymphomas and leukemias, the expression of core snRNP genes also correlates with that of MYC, and PRMT5 knockdown results in aberrant pre-mRNA splicing and loss of viability. In both human or mouse lymphomas cells, MYC knockdown also reduces the expression of core snRNP components, causing aberrant pre-mRNA splicing. Finally, we identify pre-mRNAs that are particularly sensitive to perturbation of the MYC-PRMT5 axis, resulting in either intron retention or exon skipping. Using antisense oligonucleotides (ASOs), we mimic these splicing defects and demonstrate their individual contribution to the anti-proliferative/apoptotic phenotype observed in Eµ-myc B-cells. Thus, coordinate regulation of the core snRNP assembly machinery and PRMT5 is critical for the maintenance of normal pre-mRNA splicing and cell survival upon oncogenic activation of c-myc, pointing to PRMT5 methyl-transferase activity as a potential therapeutic target in MYC-driven tumors. Citation Format: Cheryl Koh, Marco Bezzi, Diana Low, WeiXia Ang, ShunXie Teo, Florence Gay, Muthafar Al Haddawi, SooYong Tan, Motomi Osato, Arianna Sabo', KengBoon Wee, Bruno Amati, Ernesto Guccione. Regulation of the core pre-mRNA splicing machinery by MYC and PRMT5 is essential to sustain lymphomagenesis. [abstract]. In: Proceedings of the AACR Special Conference on Myc: From Biology to Therapy; Jan 7-10, 2015; La Jolla, CA. Philadelphia (PA): AACR; Mol Cancer Res 2015;13(10 Suppl):Abstract nr B30.
snRNP
Small nuclear ribonucleoprotein
Spliceosome
Cite
Citations (0)
Cite
Citations (0)
Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.
Cite
Citations (137)
Cite
Citations (0)
Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of symmetrical dimethylation of arginine residues in proteins. WD repeat domain 77 (WDR77), also known as p44, MEP50, or WD45, forms a stoichiometric complex with PRMT5. The PRMT5/p44 complex is required for cellular proliferation of lung and prostate epithelial cells during earlier stages of development and is re-activated during prostate and lung tumorigenesis. The molecular mechanisms by which PRMT5 and p44 promote cellular proliferation are unknown. Expression of PRMT5 and p44 in lung and prostate cancer cells was silenced and their target genes were identified. The regulation of target genes was validated in various cancer cells during lung development and tumorigenesis. Altered expression of target genes was achieved by ectopic cDNA expression and shRNA-mediated silencing. PRMT5 and p44 regulate expression of a specific set of genes encoding growth and anti-growth factors, including receptor tyrosine kinases and antiproliferative proteins. Genes whose expression was suppressed by PRMT5 and p44 encoded anti-growth factors and inhibited cell growth when ectopically expressed. In contrast, genes whose expression was enhanced by PRMT5 and p44 encoded growth factors and increased cell growth when expressed. Altered expression of target genes is associated with re-activation of PRMT5 and p44 during lung tumorigenesis. Our data provide the molecular basis by which PRMT5 and p44 regulate cell growth and lay a foundation for further investigation of their role in lung tumor initiation.
Ectopic expression
Cite
Citations (35)
AXIN2
Cite
Citations (2)
Pancreatic cancer is poorly responsive to chemotherapy due to intrinsic or acquired resistance. Our previous study showed that epigenetic modifying enzymes including protein arginine methyltransferase 3 (PRMT3) are dysregulated in gemcitabine (GEM)-resistant pancreatic cancer cells. Here, we attempt to elucidate the role of PRMT3 in chemoresistance. Overexpression of PRMT3 led to increased resistance to GEM in pancreatic cancer cells, whereas reduction of PRMT3 restored GEM sensitivity in resistant cells. We identified a novel PRMT3 target, ATP-binding cassette subfamily G member 2 (ABCG2), which is known to play a critical role in drug resistance. PRMT3 overexpression upregulated ABCG2 expression by increasing its mRNA stability. Mass spectrometric analysis identified hnRNPA1 as a PRMT3 interacting protein, and methylation of hnRNPA1 at R31 by PRMT3 in vivo and in vitro. The expression of methylation-deficient hnRNPA1-R31K mutant reduced the RNA binding activity of hnRNPA1 and the expression of ABCG2 mRNA. Taken together, this provides the first evidence that PRMT3 methylates the RNA recognition motif (RRM) of hnRNPA1 and promotes the binding between hnRNPA1 and ABCG2 to enhance drug resistance. Inhibition of PRMT3 could be a novel strategy for the treatment of GEM-resistant pancreatic cancer.
Abcg2
Cite
Citations (65)