logo
    Neuroprotective Effect of Brazilian Green Propolis on Retinal Ganglion Cells in Ischemic Mouse Retina
    15
    Citation
    80
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Purpose The current study was undertaken to investigate whether Brazilian green propolis (BGP) can increase the viability of retinal ganglion cells (RGCs) in ischemic mouse retina, and examined the possible mechanisms underlying this neuroprotection.Materials and Methods C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to establish retinal ischemia-reperfusion injury. Mice then received saline or BGP (200 mg/kg) intraperitoneally once daily until sacrifice. The expression of hypoxia-inducing factor (HIF)-1α and glial fibrillary acidic protein (GFAP) and the level of histone acetylation were assessed at 1, 3, and 7 days after injury. The expression of Bax, Bcl-2, p53, NF-κB, Nrf2, and HO-1 were also analyzed at 3 days after injury. The neuroprotective effect of BGP treatment on RGC survival was evaluated using Brn3a immunohistochemical staining.Results The expression of HIF-1α and GFAP was increased and the level of histone acetylation decreased in saline-treated ischemic retinas within 7 days. BGP treatment effectively attenuated the elevated expression of HIF-1α, GFAP, Bax, NF-κB and p53. The expression of Bcl-2, Nrf2, HO-1 and the level of histone acetylation increased by BGP treatment, resulting in a significant difference between BGP-treated and saline-treated retinas. Immunohistochemical staining for Brn3a also revealed that BGP treatment protected against RGC loss in ischemic retina.Conclusions Our results suggest that BGP has a neuroprotective effect on RGCs through the upregulation of histone acetylation, downregulation of apoptotic stimuli, and suppression of NF-κB mediated inflammatory pathway in ischemic retina. These findings suggest that BGP is a potential neuroprotective agent against RGC loss under oxidative stress.
    Abstract The manner in which new cells are added to the growing adult goldfish retina was examined using 3 H‐thymidine radioutography. Cell proliferation leading to the formation of neurons is restricted to the retinal margin at the ora terminalis . New retina is added in concentric rings, with slightly more growth dorsonasally. The rate of cell addition is variable, averaging 12,000 cells/ day. These new cells account for about 20% of the total increase in retinal area; the remaining 80% is due to hypertrophy, or expansin, of the retina. In contrast to all of the other retinal cells, the rods do not appear to participate in the retinal expansion. This hypothesized immobility of the rods would create a shearing strain between the retinal layers resulting in a shift in their position relative to the other cells. Were they to maintain synaptic contacts with the same horizontal and bipolar cells, the rod axons would have to be elongated peripherally or the post‐synaptic cell dendrites displaced centrally. Since neurons with this morphology have not been found in the goldfish retina, these observations suggest that the rods must be changing their synaptic connections as the retina grows.
    Citations (464)
    Introduction: WAG/Rij rat is an experimental model of retinal degenerative diseases intensifying with age.Degeneration begins in the photoreceptor cells layer, followed by disappearance of photoreceptor cells, migration of the pigment epithelium and disorganization of remaining retinal layers.However, the age of onset of the degeneration is unknown.The destroyed neurons of retina are usually replaced by glial cells.A typical marker for several types of glial cells is the glial fibrillary acidic protein (GFAP). Aim of the Work:The aim of the study is to determine postnatal changes of GFAP expression in retina of WAG/Rij rats.Material and Methods: WAG/Rij rats of both sexes and different ages: 1, 10, 15, 20, 30, 60, 180, 360 postnatal days (P) (n =3 for each age) were taken.The immunohistochemical analysis of GFAP expression in the retina of WAG/Rij rats was performed and the expression area was measured.Results: Expression of GFAP in the retina is detected from P1 to P20 as a brown staining in the internal limiting membrane or as a brown lines on the inner retina.On P30 the glial fibrillary acidic protein is already detected in significant quantities in almost all layers of the retina of the experimental rats.From P60 to P360 the expression of GFAP in the retina of the WAG/ Rij rats is more pronounced and increases in direct proportion with the age.Conclusion: It was found that GFAP expression in the retina of WAG/Rij rats increases in direct proportion to the age.The increasing GFAP expression in the retina of the WAG/Rij rats starting from the 30th postnatal day indicates an intensification of destructive processes in retinal neurons with age and their replacement by Müller cells.
    Inner limiting membrane
    GFAP stain
    Neuroglia
    Abstract The pattern of retinal vasculative is described and the position at which cell proliferation at the ventral retinal margin is maximal was shown to be at the point of entry of the ventral blood vessels. To test whether there is a causal relation between retinal blood supply and retinal cell production, surgical inversion of the eye, transplantations and excisions of retina were done to change the pattern of retinal vasculature. The growth pattern of inverted eyes was normal with respect to the internal axes of the eyes. After excision of part of the retina or after fusion of retinal fragments to form compound eyes, the pattern of retinal cell proliferation was not correlated with the distribution of retinal blood vessels, but was correlated with the position(s) of the choroidal fissure(s).
    Blood supply
    Citations (26)
    Neuronal cells are extremely vulnerable and have a limited capacity for self-repair in response to injury. For those reasons, there is obvious interest in limiting neuronal damage. Mechanisms and strategies used in order to protect against neuronal injury, apoptosis, dysfunction, and degeneration in the central nervous system are recognized as neuroprotection. Neuroprotection could be achieved through several classes of natural and synthetic neuroprotective agents. However, considering the side effects of synthetic neuroprotective agents, the search for natural neuroprotective agents has received great attention. Recently, an increasing number of studies have identified neuroprotective properties of chitosan and its derivatives; however, there are some significant challenges that must be overcome for the success of this approach. Hence, the objective of this review is to discuss neuroprotective properties of chitosan and its derivatives.
    Citations (152)
    To determine the spatial pattern and temporal evolution of the change in retinal partial oxygen pressure (DeltaPO(2)) associated with a murine oxygen-induced retinopathy (OIR) model of retinal neovascularization (NV).On P7, newborn C57BL/6 mice were exposed to 75% oxygen until postnatal day (P)12, followed by recovery in room air until P17 or P34. Control mice remained in room air until P17 or P34. At P17 and P34, functional magnetic resonance imaging (MRI) and a carbogen inhalation challenge was used to measure retinal DeltaPO(2). Retinal avascularity, distance from the optic nerve head to the vascular edge in the peripheral retina, and NV incidence and severity were measured in retinas stained with adenosine diphosphatase (ADPase).In P17 and P34 controls and in P34 OIR animals, retinas were fully vascularized without evidence of NV. In P17 OIR mice, there was a large central retinal capillary-free zone (22% +/- 3% of the entire retinal area, mean +/- SD) and 4 clockhours (range 1-7) of retinal NV at the border of the peripheral vascular and central acapillary retina in 100% (36/36) of the mice. In P17 OIR mice, retinal DeltaPO(2) over the vascularized far peripheral retina was not significantly (P > 0.05) different from the P17 control but was supernormal (P < 0.05) over the central capillary-free retina. However, no differences (P > 0.05) in retinal DeltaPO(2) were found between the P34 control and OIR groups.A reversible supernormal DeltaPO(2) was found only over the central acapillary retina during the appearance of retinal NV in a mouse OIR model. The present data show the applicability of carbogen-challenge functional MRI to the study of retinal DeltaPO(2) in vivo in eyes that are too small for the use of existing techniques.
    Citations (22)
    Müller cells in the mammalian retina normally express low levels of glial fibrillary acidic protein (GFAP); however, its expression is upregulated in response to the loss of retinal neurons. The change in expression of GFAP is one of the earliest indicators of retinal damage and is correlated with the time course of disease. The aim of this study was to investigate the time course of degeneration and the expression of GFAP in the retina of mer knockout mice.A total of 30 mer knockout mice, aged from 15 - 20 days to 1 year and 32 age-matched wild type mice as controls were tested. Immunohistochemistry was used to show the expression of GFAP in the central and peripheral retina of mer knockout and control mice at postnatal age of 15 days (P15d), 20 days (P20d), 4 weeks (P4w), 6 weeks (P6w), 8 weeks (P8w), 3 months (P3m), 6 months (P6m) and 1 years (P1y).The expression of GFAP in the central and peripheral retina of wild type mice was limited to the retinal ganglion cell and nerve fiber layers. In the central retina of mer knockout mice, GFAP expression was upregulated at P4w and GFAP immunolabelling penetrates across the entire thickness of the retina at P8w; whereas in the peripheral retina, the GFAP expression was upregulated at P20d and GFAP immunolabelling penetrates the entire retina after P4w.Increased expression of GFAP in Müller cells of mer knockout mice occur at P20d in the peripheral retina and P4w in the central retina. GFAP expression in Müller cells appears to be a secondary response to the loss of retinal neurons. Increased expression of GFAP may occur prior to any detectable morphological changes in the retina. This study suggests that the loss of retinal neurons may begin in the early stages of retinitis pigmentosa, prior to the discovery of any morphological changes in the retina.
    GFAP stain
    Knockout mouse
    Conditional gene knockout
    Neuroglia
    Citations (2)
    The oxygen requirements of different retinal layers are of interest in understanding the vulnerability of the retina to hypoxic damage in retinal diseases with an ischemic component. Here, we report the first measurements of retinal oxygen consumption in the visual streak of the rabbit retina, the region with the highest density of retinal neurons, and compare it with that in the less-specialized region of the retina underlying the vascularized portion of the rabbit retina. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth in anesthetized animals. Measurements were performed in the region of the retina containing overlying retinal vessels and in the center of the visual streak. Established mathematical analyses of the intraretinal oxygen distribution were used to quantify the rate of oxygen consumption in the inner and outer retina and the relative oxygen contributions from the choroidal and vitreal sides. Outer retinal oxygen consumption was higher in the visual streak than in the vascularized area (means ± SE, 284 ± 20 vs. 210 ± 23 nl O 2 ·min –1 ·cm –2 , P = 0.026, n = 10). However, inner retinal oxygen consumption in the visual streak was significantly lower than in the vascular area (57 ± 4.3 vs. 146 ± 12 nl O 2 ·min –1 ·cm –2 , P < 0.001). We conclude that despite the higher processing requirements of the inner retina in the visual streak, it has a significantly lower oxygen consumption rate than the inner retina underlying the retinal vasculature. This suggests that the oxygen uptake of the inner retina is regulated to a large degree by the available oxygen supply rather than the processing requirements of the inner retina alone.
    Streak
    Oxygen tension
    Retinal Artery
    Citations (27)
    Low intensity diffuse white fluorescent light (1,000 1x for 2 h) exclusively induced photoreceptor damage in the inferior retina of albino rats; the temporal retina showed extensive damage, whereas the nasal retina revealed threshold lesions prior to recovery. To expand our morphological data, further experiments were undertaken to determine if glial fibrillary acidic protein (GFAP) expression was associated with the regions of photoreceptor damage. To follow the time course of GFAP expression, immunoblot analysis was carried out on retinal homogenates of dark-adapted (control) rats and light-exposed rats returned to cyclic light for 0 h, 1, 2, 3 and 6 days. A significant twofold increase in GFAP immunoreactivity over controls was observed in the retinas of light-exposed rats returned to cyclic light for 6 days. Using an indirect immunohistochemical method, retinal sections of the control and light-exposed rats allowed to recover for 6 days were stained for GFAP. GFAP immunoreactivity was localised to the astrocytes and Müller cells. Moreover, GFAP staining in Müller cells in the retinas of control animals was uniformly restricted to rare end-feet. In contrast, a gradient of GFAP immunoreactivity was observed in experimental rats, rising from the superior retina to the inferior temporal quadrant; the GFAP staining in the inferior nasal quadrant was intermediate. Thus, GFAP immunoreactivity was proportional to photoreceptor damage. Interestingly, no GFAP induction could be demonstrated in the pineal glands of light-exposed rats.
    GFAP stain
    Neuroglia
    Citations (74)