A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 nucleases in rice
Xu TangGuanqing LiuJianping ZhouQiurong RenQi YouLi TianXuhui XinZhaohui ZhongBinglin LiuXuelian ZhengDengwei ZhangAimee A. MalzahnZhiyun GongYiping QiTao ZhangYong Zhang
3
Citation
71
Reference
10
Related Paper
Citation Trend
Abstract:
Targeting specificity has been an essential issue for applying genome editing systems in functional genomics, precise medicine and plant breeding. Understanding the scope of off-target mutations in Cas9 or Cpf1-edited crops is critical for research and regulation. In plants, only limited studies had used whole-genome sequencing (WGS) to test off-target effects of Cas9. However, the cause of numerous discovered mutations is still controversial. Furthermore, WGS based off-target analysis of Cpf1 has not been reported in any higher organism to date. Here, we conducted a WGS analysis of 34 plants edited by Cas9 and 15 plants edited by Cpf1 in T0 and T1 generations along with 20 diverse control plants in rice, a major food crop with a genome size of ~380 Mb. The sequencing depth ranged from 45X to 105X with reads mapping rate above 96%. Our results clearly show that most mutations in edited plants were created by tissue culture process, which caused ~102 to 148 single nucleotide variations (SNVs) and ~32 to 83 insertions/deletions (indels) per plant. Among 12 Cas9 single guide RNAs (sgRNAs) and 3 Cpf1 CRISPR RNAs (crRNAs) assessed by WGS, only one Cas9 sgRNA resulted in off-target mutations in T0 lines at sites predicted by computer programs. Moreover, we cannot find evidence for bona fide off-target mutations due to continued expression of Cas9 or Cpf1 with guide RNAs in T1 generation. Taken together, our comprehensive and rigorous analysis of WGS big data across multiple sample types suggests both Cas9 and Cpf1 nucleases are very specific in generating targeted DNA modifications and off-targeting can be avoided by designing guide RNAs with high specificity .Keywords:
Indel
Guide RNA
Cite
Citations (228)
Cite
Citations (413)
Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.
Guide RNA
Cite
Citations (477)
Zinc finger nuclease
Nuclease
Cite
Citations (87)
Guide RNA
Cite
Citations (0)
The ongoing advent of genome editing with programmable nucleases, including zinc-finger nuclease (ZFN), TAL effector nuclease (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated RNA-guided endonuclease Cas9 (CRISPR/Cas9), have spurred the hematopoietic stem cell gene therapy (HSC-GT). In particular, CRISPR/Cas9-mediated gene editing revealed promising outcomes in several preclinical disease models including inherited and neoplastic hematological diseases. In this review, we focused on the utilization of the CRISPR/Cas9 system as a possible treatment option for hemoglobinopathies and hematological tumors. We summarize the recent advances with CRISPR/Cas9 and its therapeutic potential for genome editing in cells from hematopoietic origin. We also critically discussed the limitations inherent to the CRISPR/Cas9 and possible alternatives for the improvement of genome editing.
Zinc finger nuclease
Nuclease
Genome Engineering
Cite
Citations (16)
Abstract Targeted genome editing using engineered nucleases such as ZFNs and TALENs has been rapidly replaced by the CRISPR/Cas9 (clustered, regulatory interspaced, short palindromic/ CRISPR-associated nuclease) system. CRISPR/Cas9 technology represents a significant improvement enabling a new level of targeting, efficiency and simplicity. Gene editing mediated by CRISPR/Cas9 has been recently used not only in bacteria but in many eukaryotic cells and organisms, from yeasts to mammals. Other modifications of the CRISPR-Cas9 system have been used to introduce heterologous domains to regulate gene expressions or label specific loci in various cell types. The review focuses not only on native CRISPR/Cas systems which evolved in prokaryotes as an endogenous adaptive defense mechanism against foreign DNA attacks, but also on the CRISPR/Cas9 adoption as a powerful tool for site-specific gene modifications in fungi, plants and mammals.
Nuclease
Zinc finger nuclease
CRISPR interference
Trans-activating crRNA
Cite
Citations (1)
Cite
Citations (11)
The rapid development of programmable nuclease-based genome editing technologies has enabled targeted gene disruption and correction both in vitro and in vivo This revolution opens up the possibility of precise genome editing at target genomic sites to modulate gene function in animals and plants. Among several programmable nucleases, the type II clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) system has progressed remarkably in recent years, leading to its widespread use in research, medicine and biotechnology. In particular, CRISPR-Cas9 shows highly efficient gene editing activity for therapeutic purposes in systems ranging from patient stem cells to animal models. However, the development of therapeutic approaches and delivery methods remains a great challenge for biomedical applications. Herein, we review therapeutic applications that use the CRISPR-Cas9 system and discuss the possibilities and challenges ahead.
Nuclease
Guide RNA
Genome Engineering
Cite
Citations (25)
Gene modifications in animal models have been greatly facilitated through the application of targeted genome editing tools. The prokaryotic CRISPR/Cas9 type II genome editing system has recently been applied in cell lines and vertebrates. However, we still have very limited information about the efficiency of mutagenesis, germline transmission rates and off-target effects in genomes of model organisms. We now demonstrate that CRISPR/Cas9 mutagenesis in zebrafish is highly efficient, reaching up to 86.0%, and is heritable. The efficiency of the CRISPR/Cas9 system further facilitated the targeted knock-in of a protein tag provided by a donor oligonucleotide with knock-in efficiencies of 3.5-15.6%. Mutation rates at potential off-target sites are only 1.1-2.5%, demonstrating the specificity of the CRISPR/Cas9 system. The ease and efficiency of the CRISPR/Cas9 system with limited off-target effects make it a powerful genome engineering tool for in vivo studies.
Genome Engineering
Cite
Citations (465)