logo
    FGF19–FGFR4 Signaling in Hepatocellular Carcinoma
    125
    Citation
    78
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, with an increasing mortality rate. Aberrant expression of fibroblast growth factor 19–fibroblast growth factor receptor 4 (FGF19–FGFR4) is reported to be an oncogenic-driver pathway for HCC patients. Thus, the FGF19–FGFR4 signaling pathway is a promising target for the treatment of HCC. Several pan-FGFR (1–4) and FGFR4-specific inhibitors are in different phases of clinical trials. In this review, we summarize the information, recent developments, binding modes, selectivity, and clinical trial phases of different available FGFR4/pan-FGF inhibitors. We also discuss future perspectives and highlight the points that should be addressed to improve the efficacy of these inhibitors.
    Keywords:
    FGF19
    The fibroblast growth factor (FGF) family contains at least nineteen members that play important roles in embryogenesis, vascularization, neuron system growth and in development and pathological states. In order to study the mechanism of interaction of FGF/FGFR, plenty of research work was focused on the study of structure and function of FGF and FGFR. Heparin binding domain of aFGF and bFGF, and receptor binding domain of bFGF have been identified. Heparin binding domain and ligands binding domain of FGFR also were localized. Based on the research, two models of interaction of FGF/FGFR were presented and many nucleotide, saccharides and peptide inhibitors were developed. The inhibitors may play an important role in the designing of anti cancer drug.
    Citations (2)
    Fibroblast growth factor (FGF) family plays key roles in development, wound healing, and angiogenesis. Understanding of the molecular nature of interactions of FGFs with their receptors (FGFRs) has been seriously limited by the absence of structural information on FGFR or FGF–FGFR complex. In this study, based on an exhaustive analysis of the primary sequences of the FGF family, we determined that the residues that constitute the primary receptor-binding site of FGF-2 are conserved throughout the FGF family, whereas those of the secondary receptor binding site of FGF-2 are not. We propose that the FGF–FGFR interaction mediated by the ‘conserved’ primary site interactions is likely to be similar if not identical for the entire FGF family, whereas the ‘variable’ secondary sites, on both FGF as well as FGFR mediates specificity of a given FGF to a given FGFR isoform. Furthermore, as the pro-inflammatory cytokine interleukin 1 (IL-1) and FGF-2 share the same structural scaffold, we find that the spatial orientation of the primary receptor-binding site of FGF-2 coincides structurally with the IL-1β receptor-binding site when the two molecules are superimposed. The structural similarities between the IL-1 and the FGF system provided a framework to elucidate molecular principles of FGF–FGFR interactions. In the FGF–FGFR model proposed here, the two domains of a single FGFR wrap around a single FGF-2 molecule such that one domain of FGFR binds to the primary receptor-binding site of the FGF molecule, while the second domain of the same FGFR binds to the secondary receptor-binding site of the same FGF molecule. Finally, the proposed model is able to accommodate not only heparin-like glycosaminoglycan (HLGAG) interactions with FGF and FGFR but also FGF dimerization or oligomerization mediated by HLGAG.
    Citations (71)
    The evolution of the fibroblast growth factor (FGF)-FGF receptor (FGFR) signalling system has closely followed that of multicellular organisms. The abilities of nine FGFs (FGF-1 to FGF-9; examples of FGF subfamilies 1, 4, 7, 8, and 9) and seven FGFRs or isoforms (FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4) to support signalling in the presence of heparin, a proxy for the cellular heparan sulfate coreceptor, were assembled into a network. A connection between two FGFRs was defined as their mutual ability to signal with a particular FGF. The network contained a core of four receptors (FGFR1c, FGFR2c, FGFR3c, and FGFR4) with complete connectivity and high redundancy. Analysis of the wider network indicated that neither FGF-3 nor FGF-7 was well connected to this core of four receptors, and that divergence of a precursor of FGF subgroups 1, 4 and 9 from FGF subgroup 8 may have allowed expansion from a three-member FGFR core signalling system to the four-member core network. This increases by four-fold the number of possible signalling combinations. Synchrotron radiation CD spectra of the FGFs with heparin revealed no overall common structural change, suggesting the existence of distinct heparin-binding sites throughout the FGFs. The approach provides a potential method of identifying agents capable of influencing particular FGF-FGFR combinations, or areas of the signalling network, for experimental or therapeutic purposes.
    Citations (26)
    The 22 members of the FGF family have been implicated in cell proliferation, differentiation, survival, and migration. They are required for both development and maintenance of vertebrates, demonstrating an exquisite pattern of affinities for both protein and proteoglycan receptors. FGF19, one of the most divergent human FGFs, is unique in binding solely to one receptor, FGFR4. We have used molecular replacement to solve the crystal structure of FGF19 at 1.3 A resolution using five superimposed FGF structures as the search model. The structure shows that two novel disulfide bonds found in FGF19, one of which appears to be conserved among several of the other FGFs, stabilize extended loops. The key heparin-binding loops of FGF19 have radically different conformations and charge patterns, compared to other FGFs, correlating with the unusually low affinity of FGF19 for heparin. A model for the complex of FGF19 with FGFR4 demonstrates that unique sequences in both FGF19 and FGFR4 are key to the formation of the complex. The structure therefore offers a clear explanation for the unusual affinity of FGF19 for FGFR4 alone.
    FGF19
    Affinities
    Citations (125)
    FGF19, FGF21, and FGF23 form a unique subfamily of fibroblast growth factors. Because they contain intra-molecular disulfide bonds and show reduced affinity toward heparan sulfate located in the extracellular space, it is thought that, in contrast to other FGFs, they function as endocrine hormones. FGF23 and its co-receptor αKlotho are involved in the control of aging, but it is not known if the same holds true for FGF19, which can also signal through αKlotho. However, considerable evidence supports a role for FGF19 in controlling various aspects of metabolism. We have recently fully characterized FGF19/FGFR/co-factor interactions and signaling, and in the current manuscript discuss the contribution of the FGF19/FGFR4 axis to bile acid and glucose regulation.
    FGF19
    FGF21
    Citations (30)